论文标题
关于虫洞取消和分解的注释
Notes on Wormhole Cancellation and Factorization
论文作者
论文摘要
在ADS/CFT中,脱钩的CFT的分区函数生活在单独的渐近边界上。但是,连接不同边界的散装虫洞的存在倾向于破坏散装分区函数的分解,从而导致两侧之间的分歧。在本文中,我们提出了两个示例,其中虫洞贡献在批量分区功能计算中相互取消,因此可以实现大量分解。第一个示例是二维Jackiw-teitelboim(JT)重力,其中提出的实现取消的方法驻留在与不同虫洞相关的额外复杂阶段中。这些阶段是由于堕落的真空结构而出现的。在Sachdev-Ye-Kitaev(SYK)模型的示例中,由于虫洞鞍座在复杂平面上的分布,可以取消。这两个示例通过扩展希尔伯特空间和更多阶段的蠕虫鞍鞍来实现批量分区功能分解的一种方法。
In AdS/CFT, partition functions of decoupled CFTs living on separate asymptotic boundaries factorize. However, the presence of bulk wormholes connecting different boundaries tends to spoil the factorization of the bulk partition function, which leads to a disagreement between the two sides. In this paper, we present two examples where wormhole contributions cancel each other in bulk partition function calculations, thus the bulk factorization can be realized. The first example is in 2-dimensional Jackiw-Teitelboim (JT) gravity, where the proposed way of realizing the cancellation resides in the extra complex phases associated with different wormholes. The phases arise due to the degenerate vacua structure. In the example of the Sachdev-Ye-Kitaev (SYK) model, the cancellation can be achieved due to the distribution of the wormhole saddles on a complex plane. The two examples demonstrate a way of realizing bulk partition function factorization by extending the Hilbert space and dressing wormhole saddles with extra phases.