论文标题

分数Chern绝缘子的最新发展

Recent Developments in Fractional Chern Insulators

论文作者

Liu, Zhao, Bergholtz, Emil J.

论文摘要

分数Chern绝缘子(FCIS)是二维(2D)电子气体中常规分数量子厅效应(FQHE)的晶格概括。当几乎无零Chern数的近乎平坦的Bloch带被强烈相互作用的粒子部分占据时,它们通常在2D晶格中出现。带拓扑和相互作用的endow fcis外来拓扑顺序以精确量化的霍尔电导,高生物歧管上的稳健地面堕落性和分数化的准粒子为特征。由于原则上FCI可以在零磁场上存在并受到较大的能量差距的保护,因此它们为观察和利用FQHE现象提供了一种潜在的实验更容易接近的途径。此外,在常规连续体FQHE中不存在的FCI和特定于晶格特异性效应之间的相互作用提出了新的理论挑战。在本章中,我们提供了FCI的理论模型和数值模拟的一般介绍,然后特别关注Moiré材料中该领域的最新发展,同时还评论了冷原子系统中潜在的替代实现。凭借大量令人兴奋的理论和实验进步,Moiré材料中的拓扑平面带,例如六角形的硝化硼级魔法扭曲的双层石墨烯,确实是一个非常广泛的FCIS平台,用于FCIS,在拓扑,质谱和互动之间具有令人兴奋的相互作用。

Fractional Chern insulators (FCIs) are lattice generalizations of the conventional fractional quantum Hall effect (FQHE) in two-dimensional (2D) electron gases. They typically arise in a 2D lattice without time-reversal symmetry when a nearly flat Bloch band with nonzero Chern number is partially occupied by strongly interacting particles. Band topology and interactions endow FCIs exotic topological orders which are characterized by the precisely quantized Hall conductance, robust ground-state degeneracy on high-genus manifolds, and fractionalized quasiparticles. Since in principle FCIs can exist at zero magnetic field and be protected by a large energy gap, they provide a potentially experimentally more accessible avenue for observing and harnessing FQHE phenomena. Moreover, the interplay between FCIs and lattice-specific effects that do not exist in the conventional continuum FQHE poses new theoretical challenges. In this chapter, we provide a general introduction of the theoretical model and numerical simulation of FCIs, then pay special attention on the recent development of this field in moiré materials while also commenting on potential alternative implementations in cold atom systems. With a plethora of exciting theoretical and experimental progress, topological flat bands in moiré materials such as magic-angle twisted bilayer graphene on hexagonal boron nitride have indeed turned out to be a remarkably versatile platform for FCIs featuring an intriguing interplay between topology, geometry, and interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源