论文标题
AC驱动的多发射Josephson结合类似物中的相动态
Phase dynamics in an AC driven multiterminal Josephson junction analogue
论文作者
论文摘要
在存在交流驱动器的情况下,多性约瑟夫森连接处表现出逆AC Josephson效应,其中每个连接的超导阶段的振荡可以相互锁定或互相锁定在外部驱动器上。这些不同相位锁定状态之间的竞争导致一系列复杂的量化电压高原阵列,其稳定性在很大程度上取决于分流连接的电路参数。鉴于参数空间的宽度,仅用低温传输实验就无法探索该相图,因此我们提出了一个易于调谐的模拟电路,该电路的动力学性质模仿了三个末端连接的动力学特性。我们专注于观察多发逆AC Josephson效应,并讨论如何识别与三个连接及其四重奏状态相关的夏皮罗步骤。我们仅观察到整数相锁定的状态在强大的网络中,但是当连接的质量因素增加时,分数shapiro的步骤也出现。最后,我们讨论了横向耦合在连接同步中的作用。
In the presence of an AC drive, multiterminal Josephson junctions exhibit the inverse AC Josephson effect, where the oscillations of the superconducting phase of each junction can lock onto one another or onto the external drive. The competition between these different phase locked states results in a complex array of quantized voltage plateaus whose stability strongly depend on the circuit parameters of the shunted junctions. This phase diagram cannot be explored with low temperature transport experiments alone, given the breadth of the parameter space, so we present an easily tunable analog circuit whose dynamical properties emulate those of a three terminal junction. We focus on the observation of the multiterminal inverse AC Josephson effect, and we discuss how to identify Shapiro steps associated with each of the three junctions as well as their quartet states. We only observe integer phase locked states in strongly overdamped networks, but fractional Shapiro steps appear as well when the quality factor of the junctions increases. Finally, we discuss the role of transverse coupling in the synchronization of the junctions.