论文标题
$ \ mathbb {f} _q [t] $ inHalász定理的注释
A note on Halász's Theorem in $\mathbb{F}_q[t]$
论文作者
论文摘要
在整数环境中,格兰维尔,哈珀和Soundararajan表明,可以改进哈哈斯定理中的上限以获得平滑支持的功能。我们在$ \ mathbb {f} _q [t] $中得出了Halász定理的类似结果,然后考虑一下此版本的Halász定理的一般上限的相反问题。
In the setting of the integers, Granville, Harper and Soundararajan showed that the upper bound in Halász's Theorem can be improved for smoothly supported functions. We derive the analogous result for Halász's Theorem in $\mathbb{F}_q[t]$, and then consider the converse question of when the general upper bound in this version of Halász's Theorem is actually attained.