论文标题

使用SARS-COV-2分割模型在4D CT图像中使用SARS-COV-2分割模型的COVID 3D定位的可传递性限制

Transferability limitations for Covid 3D Localization Using SARS-CoV-2 segmentation models in 4D CT images

论文作者

Maganaris, Constantine, Protopapadakis, Eftychios, Bakalos, Nikolaos, Doulamis, Nikolaos, Kalogeras, Dimitris, Angeli, Aikaterini

论文摘要

在本文中,我们研究了使用深度学习模型时的可转移性限制,以用于CT图像中肺炎感染区域的语义分割。拟议的方法采用4通道输入;基于Hounsfield量表的3个通道,以及一个表示肺部区域的通道(二进制)。我们使用了3种不同的公开可用的CT数据集。如果没有肺部面罩,深度学习模型会生成代理图像。实验结果表明,在创建共同分割模型时,应仔细使用可传递性。在大量数据中重新训练该模型多次以上会导致分割精度的降低。

In this paper, we investigate the transferability limitations when using deep learning models, for semantic segmentation of pneumonia-infected areas in CT images. The proposed approach adopts a 4 channel input; 3 channels based on Hounsfield scale, plus one channel (binary) denoting the lung area. We used 3 different, publicly available, CT datasets. If the lung area mask was not available, a deep learning model generates a proxy image. Experimental results suggesting that transferability should be used carefully, when creating Covid segmentation models; retraining the model more than one times in large sets of data results in a decrease in segmentation accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源