论文标题

因此(3) - 货币:SO(3) - 6D对象姿势估计的均衡学习

SO(3)-Pose: SO(3)-Equivariance Learning for 6D Object Pose Estimation

论文作者

Pan, Haoran, Zhou, Jun, Liu, Yuanpeng, Lu, Xuequan, Wang, Weiming, Yan, Xuefeng, Wei, Mingqiang

论文摘要

从RGB-D图像中对刚性对象的6D姿势估计对于机器人技术中的对象抓握和操纵至关重要。尽管RGB通道和深度(d)通道通常是互补的,分别提供了外观和几何信息,但如何完全从两个跨模式数据中完全受益仍然是非平凡的。从简单而新的观察结果中,当对象旋转时,其语义标签是姿势不变的,而其关键点偏移方向是姿势的变体。为此,我们提出了So(3)pose,这是一个新的表示学习网络,可以探索So(3)Equivariant和So(3) - 从深度通道中进行姿势估计的特征。 SO(3) - invariant特征有助于学习更独特的表示,以分割RGB通道外观相似的对象。 SO(3) - 等级特征与RGB特征通信,以推导(缺失的)几何形状,以检测从深度通道的反射表面的对象的关键点。与大多数现有的姿势估计方法不同,我们的SO(3)置于RGB和深度通道之间的信息通信,而且自然会吸收SO(3) - 等级的几何学知识从深度图像中,从而导致更好的外观和几何形状表示。全面的实验表明,我们的方法在三个基准测试中实现了最先进的性能。

6D pose estimation of rigid objects from RGB-D images is crucial for object grasping and manipulation in robotics. Although RGB channels and the depth (D) channel are often complementary, providing respectively the appearance and geometry information, it is still non-trivial how to fully benefit from the two cross-modal data. From the simple yet new observation, when an object rotates, its semantic label is invariant to the pose while its keypoint offset direction is variant to the pose. To this end, we present SO(3)-Pose, a new representation learning network to explore SO(3)-equivariant and SO(3)-invariant features from the depth channel for pose estimation. The SO(3)-invariant features facilitate to learn more distinctive representations for segmenting objects with similar appearance from RGB channels. The SO(3)-equivariant features communicate with RGB features to deduce the (missed) geometry for detecting keypoints of an object with the reflective surface from the depth channel. Unlike most of existing pose estimation methods, our SO(3)-Pose not only implements the information communication between the RGB and depth channels, but also naturally absorbs the SO(3)-equivariance geometry knowledge from depth images, leading to better appearance and geometry representation learning. Comprehensive experiments show that our method achieves the state-of-the-art performance on three benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源