论文标题

嘈杂的非负塔克分解,稀疏因素和缺少数据

Noisy Nonnegative Tucker Decomposition with Sparse Factors and Missing Data

论文作者

Zhang, Xiongjun, Ng, Michael K.

论文摘要

张量分解是从多维非负数据中提取物理有意义的潜在因素的强大工具,并且对诸如图像处理,机器学习和计算机视觉等各个领域的兴趣越来越多。在本文中,我们提出了一种稀疏的非负塔克分解和完成方法,用于在嘈杂的观察结果下恢复潜在的非负数据。在这里,基本的非负数据张量分解为核心张量,几个因子矩阵,所有条目均为非负值,并且因子矩阵稀疏。损失函数是由嘈杂观测值的最大似然估计得出的,并且使用$ \ ell_0 $ norm来增强因子矩阵的稀疏性。我们在通用噪声场景下建立了所提出模型的估计器的误差界限,然后将其指定为具有添加剂高斯噪声,加性拉普拉斯噪声和泊松观测值的观测值。我们的理论结果比现有的基于张量或基于矩阵的方法更好。此外,最小值的下限显示与派生的上限与对数因子相匹配。合成和现实世界数据集的数值示例都证明了提出的非负张量数据完成方法的优越性。

Tensor decomposition is a powerful tool for extracting physically meaningful latent factors from multi-dimensional nonnegative data, and has been an increasing interest in a variety of fields such as image processing, machine learning, and computer vision. In this paper, we propose a sparse nonnegative Tucker decomposition and completion method for the recovery of underlying nonnegative data under noisy observations. Here the underlying nonnegative data tensor is decomposed into a core tensor and several factor matrices with all entries being nonnegative and the factor matrices being sparse. The loss function is derived by the maximum likelihood estimation of the noisy observations, and the $\ell_0$ norm is employed to enhance the sparsity of the factor matrices. We establish the error bound of the estimator of the proposed model under generic noise scenarios, which is then specified to the observations with additive Gaussian noise, additive Laplace noise, and Poisson observations, respectively. Our theoretical results are better than those by existing tensor-based or matrix-based methods. Moreover, the minimax lower bounds are shown to be matched with the derived upper bounds up to logarithmic factors. Numerical examples on both synthetic and real-world data sets demonstrate the superiority of the proposed method for nonnegative tensor data completion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源