论文标题

学习非平衡统计力学和动力学相变

Learning nonequilibrium statistical mechanics and dynamical phase transitions

论文作者

Tang, Ying, Liu, Jing, Zhang, Jiang, Zhang, Pan

论文摘要

非平衡统计力学表现出各种远离平衡的复杂现象。它继承了平衡的挑战,包括准确地描述了大量配置的联合分布,并且随着分布的发展而提出新的挑战。将动态相变表征为紧急行为进一步需要在控制参数下跟踪非平衡系统。尽管已经提出了许多方法,例如用于一维晶格的张量网络,但我们缺乏一种超越稳态和更高维度的任意时间的方法。在这里,我们开发了一个通用的计算框架,通过利用变异自回旋网络来研究统计力学中非平衡系统的时间演变,该网络为动态分区函数提供了有效的计算,这是发现相变的中心量。我们将方法应用于非平衡统计力学的原型模型,包括高达三个维度的结构玻璃的动力学约束模型。该方法揭示了自旋挡板,动力学相图以及新的比例关系的主动无效相变。结果突出了机器学习动态相变的潜力。

Nonequilibrium statistical mechanics exhibit a variety of complex phenomena far from equilibrium. It inherits challenges of equilibrium, including accurately describing the joint distribution of a large number of configurations, and also poses new challenges as the distribution evolves over time. Characterizing dynamical phase transitions as an emergent behavior further requires tracking nonequilibrium systems under a control parameter. While a number of methods have been proposed, such as tensor networks for one-dimensional lattices, we lack a method for arbitrary time beyond the steady state and for higher dimensions. Here, we develop a general computational framework to study the time evolution of nonequilibrium systems in statistical mechanics by leveraging variational autoregressive networks, which offer an efficient computation on the dynamical partition function, a central quantity for discovering the phase transition. We apply the approach to prototype models of nonequilibrium statistical mechanics, including the kinetically constrained models of structural glasses up to three dimensions. The approach uncovers the active-inactive phase transition of spin flips, the dynamical phase diagram, as well as new scaling relations. The result highlights the potential of machine learning dynamical phase transitions in nonequilibrium systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源