论文标题
划分超图很难:模型,不Xibibibibibility and Applications
Partitioning Hypergraphs is Hard: Models, Inapproximability, and Applications
论文作者
论文摘要
我们研究了平衡的$ k $ - 道路超图形分区问题,特别关注其在许多核计划中的实际应用。鉴于$ n $节点的超图,我们的目标是将设置的节点划分为$ k $大小的零件(1+ε)\ cdot \ frac \ frac {n} {k} $,同时最小化分区成本,定义为切割的超胸部数量,可能还可以通过分区数量来插入。我们表明,如果指数时间假设成立,即使对于最大程度的2级超图,我们也可以在多个方面的案例中研究多个案例,即使在多个方面的案例中,在多项性的高度上,在多项式假设中,在多项式时间中,即使在多项式的超图中,也可以多于普遍的情况下,并且在多个范围内,并且在多个范围内,并且在多个方面,并且在多个方面,在多项式的高度范围内,在多项式的超图中,在多项式假设中,在多项式假设中,在多项式时间中,在多项式假设中,在多项式假设中也不能近似于最佳解决方案的最佳解决方案的最佳解决方案。 此外,我们考虑了分区问题的两个扩展,这是从实际考虑因素中引起的。首先,我们将HyperDags的概念介绍为模型,将优先限制的计算作为HyperGraphs,并分析了平衡分区问题对这种情况的适应。其次,我们研究了现代计算机架构中的层次分区问题,以模拟层次成绩(不均匀的内存访问)效应,并且我们表明,忽略通信成本的这一层次结构方面可以产生明显较弱的解决方案。
We study the balanced $k$-way hypergraph partitioning problem, with a special focus on its practical applications to manycore scheduling. Given a hypergraph on $n$ nodes, our goal is to partition the node set into $k$ parts of size at most $(1+ε)\cdot \frac{n}{k}$ each, while minimizing the cost of the partitioning, defined as the number of cut hyperedges, possibly also weighted by the number of partitions they intersect. We show that this problem cannot be approximated to within a $n^{1/\text{poly} \log\log n}$ factor of the optimal solution in polynomial time if the Exponential Time Hypothesis holds, even for hypergraphs of maximal degree 2. We also study the hardness of the partitioning problem from a parameterized complexity perspective, and in the more general case when we have multiple balance constraints. Furthermore, we consider two extensions of the partitioning problem that are motivated from practical considerations. Firstly, we introduce the concept of hyperDAGs to model precedence-constrained computations as hypergraphs, and we analyze the adaptation of the balanced partitioning problem to this case. Secondly, we study the hierarchical partitioning problem to model hierarchical NUMA (non-uniform memory access) effects in modern computer architectures, and we show that ignoring this hierarchical aspect of the communication cost can yield significantly weaker solutions.