论文标题
关于网络物理系统安全数据集的元素
On the Elements of Datasets for Cyber Physical Systems Security
论文作者
论文摘要
数据集对于将AI算法应用于网络物理系统(CPS)安全性至关重要。由于实际CPS数据集的稀缺性,研究人员选择使用真实或虚拟化测试台生成自己的数据集。但是,与其他AI域不同,CPS是一个复杂的系统,具有许多确定其行为的接口。仅包括一系列传感器测量和网络流量的数据集可能不足以开发弹性的AI防御或进攻剂。在本文中,我们研究了捕获系统行为和交互所需的CPS安全数据集的\ emph {Elements},并提出了一个数据集体系结构,该架构有可能增强AI算法在保护网络物理系统方面的性能。该框架包括数据集元素,攻击表示和所需的数据集功能。我们将现有数据集与建议的体系结构进行比较,以识别当前局限性,并使用TestBeds讨论CPS数据集生成的未来。
Datasets are essential to apply AI algorithms to Cyber Physical System (CPS) Security. Due to scarcity of real CPS datasets, researchers elected to generate their own datasets using either real or virtualized testbeds. However, unlike other AI domains, a CPS is a complex system with many interfaces that determine its behavior. A dataset that comprises merely a collection of sensor measurements and network traffic may not be sufficient to develop resilient AI defensive or offensive agents. In this paper, we study the \emph{elements} of CPS security datasets required to capture the system behavior and interactions, and propose a dataset architecture that has the potential to enhance the performance of AI algorithms in securing cyber physical systems. The framework includes dataset elements, attack representation, and required dataset features. We compare existing datasets to the proposed architecture to identify the current limitations and discuss the future of CPS dataset generation using testbeds.