论文标题

来自Wilson Trialities地图的试验的发病率几何形状

Incidence geometries with trialities coming from maps with Wilson trialities

论文作者

Leemans, Dimitri, Stokes, Klara

论文摘要

试验性是在几何形状中的经典概念,它是在$ d_4 $ type of type of type of type of type of typer of typer of typerry中产生的。另一个试验性的概念是威尔逊试验,出现在可易折扣地图的背景下。我们在这两个概念之间建立了一座桥梁,展示了如何使用接受威尔逊试验的地图的审判来构建发生率的几何形状。我们还扩展了Jones和Poulton的结果,表明对于每个Prime Power $ Q $,组$ {\ rm l} _2(q^3)$具有可允许Wilson试用性但没有偶性的地图。

Triality is a classical notion in geometry that arose in the context of the Lie groups of type $D_4$. Another notion of triality, Wilson triality, appears in the context of reflexible maps. We build a bridge between these two notions, showing how to construct an incidence geometry with a triality from a map that admits a Wilson triality. We also extend a result by Jones and Poulton, showing that for every prime power $q$, the group ${\rm L}_2(q^3)$ has maps that admit Wilson trialities but no dualities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源