论文标题
Floquet拓扑绝缘子的电路模拟
Electric Circuit Simulation of Floquet Topological Insulators
论文作者
论文摘要
我们提出了一种使用电感器和电容器制成的电路,在傅立叶空间中模拟任何非相互作用和时间周期性紧密结合的哈密顿量。我们首先将时间周期性的哈密顿量映射到Floquet Hamiltonian,将时间维度转换为浮力维度。在电路中,该浮子维度被模拟为额外的空间维度,而无需任何时间依赖电气元素。 Floquet Hamiltonian所需的复制品数量取决于驱动器的频率和强度。我们还证明,我们可以通过测量节点之间的两点阻抗来检测电路中的拓扑边缘状态(包括动力学间隙中的异常边缘状态)。我们的方法铺平了一种简单而有希望的方法,可以探索和控制电路中的浮雕拓扑阶段。
We present a method for simulating any non-interacting and time-periodic tight-binding Hamiltonian in Fourier space using electric circuits made of inductors and capacitors. We first map the time-periodic Hamiltonian to a Floquet Hamiltonian, which converts the time dimension into a Floquet dimension. In electric circuits, this Floquet dimension is simulated as an extra spatial dimension without any time dependency in the electrical elements. The number of replicas needed in the Floquet Hamiltonian depends on the frequency and strength of the drive. We also demonstrate that we can detect the topological edge states (including the anomalous edge states in the dynamical gap) in an electric circuit by measuring the two-point impedance between the nodes. Our method paves a simple and promising way to explore and control Floquet topological phases in electric circuits.