论文标题
沿Polchinski重新归一化流的庞加尔{é}常数的行为
Behavior of the Poincar{é} constant along the Polchinski renormalization flow
论文作者
论文摘要
我们使用$γ$ -calculus的动态版本来控制沿Polchinski重新归一化流的庞加尔{é}常数的行为。我们还处理高阶特征值的情况。我们的方法概括了B. klartag和E. Putterman引入的一种方法,以分析沿热流的对数凸线分布的演变。此外,我们将其应用于一般$φ$ 4测量,并从运输地图上讨论解释。
We control the behavior of the Poincar{é} constant along the Polchinski renormalization flow using a dynamic version of $Γ$-calculus. We also treat the case of higher order eigenvalues. Our method generalizes a method introduced by B. Klartag and E. Putterman to analyze the evolution of log-concave distributions along the heat flow. Furthermore, we apply it to general $Φ$ 4-measures and discuss the interpretation in terms of transport maps.