论文标题

3D固定和行进平面深色孤子的动力不稳定性

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

论文作者

Mithun, T., Fritsch, A. R., Spielman, I. B., Kevrekidis, P. G.

论文摘要

在这里,我们通过定量比较理论分析和相关的数值计算与我们的实验结果来重新审视静止和传播孤子激发的主题。使用完全3D数值模拟,我们探讨了平面暗孤子的存在,稳定性和演变动力学,以及它们不稳定性诱导的衰减产物,包括孤子涡流和涡流环。在被困的情况下,没有可调节的参数,我们的数值发现与实验观察到的相干结构对应。没有纵向陷阱,我们可以确定数值确切的行进解决方案,并量化其横向稳定阈值如何随孤立波速的函数而变化。

Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results. Using fully 3d numerical simulations, we explore the existence, stability, and evolution dynamics of planar dark solitons, as well as their instability-induced decay products including solitonic vortices and vortex rings. In the trapped case and with no adjustable parameters, our numerical findings are in correspondence with experimentally observed coherent structures. Without a longitudinal trap, we identify numerically exact traveling solutions and quantify how their transverse destabilization threshold changes as a function of the solitary wave speed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源