论文标题
建筑公司的自动资源管理,使用基于物联网的深入强化学习
Autonomous Resource Management in Construction Companies Using Deep Reinforcement Learning Based on IoT
论文作者
论文摘要
资源分配是计划建设项目的最关键问题之一,因为它对成本,时间和质量的直接影响。根据项目目标,通常有特定的分配方法用于自动资源管理。但是,在整个建筑组织中利用资源的综合计划和优化是稀缺的。这项研究的目的是为基于深厚的强化学习(DRL)提供自动资源分配结构,该结构可在各种情况下使用。在这种结构中,数据收集(DH)收集了分布式的物联网(IoT)传感器设备的资源信息,这些设备将在自主资源管理方法中采用。然后,将覆盖资源分配(CRA)与从DH获得的信息进行比较,其中自动资源管理(ARM)确定了感兴趣的项目。同样,基于公司的结构化资源信息,在两种不同的分配情况下对具有相似模型的双重Q-NETWORK(DDQN)进行了培训,以平衡目标与资源约束。本文中建议的技术可以通过将投资组合信息与采用的单个项目信息相结合,可以有效地适应大型资源管理系统。此外,详细分析了重要信息处理参数对资源分配绩效的影响。此外,提出了管理方法的普遍性结果,这表明当情况变量发生变化时,不需要进行额外的培训。
Resource allocation is one of the most critical issues in planning construction projects, due to its direct impact on cost, time, and quality. There are usually specific allocation methods for autonomous resource management according to the projects objectives. However, integrated planning and optimization of utilizing resources in an entire construction organization are scarce. The purpose of this study is to present an automatic resource allocation structure for construction companies based on Deep Reinforcement Learning (DRL), which can be used in various situations. In this structure, Data Harvesting (DH) gathers resource information from the distributed Internet of Things (IoT) sensor devices all over the companys projects to be employed in the autonomous resource management approach. Then, Coverage Resources Allocation (CRA) is compared to the information obtained from DH in which the Autonomous Resource Management (ARM) determines the project of interest. Likewise, Double Deep Q-Networks (DDQNs) with similar models are trained on two distinct assignment situations based on structured resource information of the company to balance objectives with resource constraints. The suggested technique in this paper can efficiently adjust to large resource management systems by combining portfolio information with adopted individual project information. Also, the effects of important information processing parameters on resource allocation performance are analyzed in detail. Moreover, the results of the generalizability of management approaches are presented, indicating no need for additional training when the variables of situations change.