论文标题
为推荐系统产生强大,公平和情感的解释
Towards Generating Robust, Fair, and Emotion-Aware Explanations for Recommender Systems
论文作者
论文摘要
随着推荐系统变得越来越复杂和复杂,它们通常会缺乏公平和透明度。为建议提供强大而公正的解释,人们越来越关注,因为它可以帮助解决这些问题并提高推荐系统的信任度和信息性。然而,尽管事实是为人类生成了这种解释,这些人类对具有适当情绪的信息做出更强烈反应,但在为建议解释时,人们缺乏对情绪的考虑。当前的解释生成模型可夸大某些情绪,而无需准确捕获基本的语调或含义。在本文中,我们提出了一种基于多头变压器的新方法,称为“情感感知变压器”,以解释推荐(情感者),以产生更健壮,公平和情感增强的解释。为了衡量产生的解释的语言质量和情感公平性,我们采用自动文本指标和人类的看法进行评估。具有多个评估指标的三个广泛使用基准数据集的实验表明,情感者在文本质量,解释性和对情感分布的公平性方面始终优于现有的最新解释生成模型。 Emoter的实施将作为开源工具包发布,以支持进一步的研究。
As recommender systems become increasingly sophisticated and complex, they often suffer from lack of fairness and transparency. Providing robust and unbiased explanations for recommendations has been drawing more and more attention as it can help address these issues and improve trustworthiness and informativeness of recommender systems. However, despite the fact that such explanations are generated for humans who respond more strongly to messages with appropriate emotions, there is a lack of consideration for emotions when generating explanations for recommendations. Current explanation generation models are found to exaggerate certain emotions without accurately capturing the underlying tone or the meaning. In this paper, we propose a novel method based on a multi-head transformer, called Emotion-aware Transformer for Explainable Recommendation (EmoTER), to generate more robust, fair, and emotion-enhanced explanations. To measure the linguistic quality and emotion fairness of the generated explanations, we adopt both automatic text metrics and human perceptions for evaluation. Experiments on three widely-used benchmark datasets with multiple evaluation metrics demonstrate that EmoTER consistently outperforms the existing state-of-the-art explanation generation models in terms of text quality, explainability, and consideration for fairness to emotion distribution. Implementation of EmoTER will be released as an open-source toolkit to support further research.