论文标题
RE4:学习重新对立,重新借口,重建多功能推荐
Re4: Learning to Re-contrast, Re-attend, Re-construct for Multi-interest Recommendation
论文作者
论文摘要
有效代表用户的位置是现代推荐系统的核心。由于用户的兴趣自然会表现出多个方面,因此开发多功能框架以供推荐使用,而不是用整体嵌入来代表每个用户。尽管它们有效,但现有方法仅利用编码器(正向流)来表示兴趣的多个方面。但是,如果没有明确的正则化,兴趣嵌入可能与彼此不同,也不会反映代表性的历史项目。为此,我们提出了RE4框架,该框架利用向后流重新检查每个兴趣的嵌入。具体而言,RE4封装了三个向后流,即1)重新对比,它驱动了使用对比学习的每个兴趣与其他利益不同的兴趣; 2)重新训练,以确保向前流中的兴趣项目相关性估计与最终建议中使用的标准一致; 3)重新构造,这确保每个利息嵌入可以在语义上反映与相应利益相关的代表性项目的信息。我们演示了comirec上新型的前回向多动范式,并在三个现实世界数据集上进行了广泛的实验。经验研究验证了RE4有助于学习独特而有效的多利益表示。
Effectively representing users lie at the core of modern recommender systems. Since users' interests naturally exhibit multiple aspects, it is of increasing interest to develop multi-interest frameworks for recommendation, rather than represent each user with an overall embedding. Despite their effectiveness, existing methods solely exploit the encoder (the forward flow) to represent multiple aspects of interests. However, without explicit regularization, the interest embeddings may not be distinct from each other nor semantically reflect representative historical items. Towards this end, we propose the Re4 framework, which leverages the backward flow to reexamine each interest embedding. Specifically, Re4 encapsulates three backward flows, i.e., 1) Re-contrast, which drives each interest embedding to be distinct from other interests using contrastive learning; 2) Re-attend, which ensures the interest-item correlation estimation in the forward flow to be consistent with the criterion used in final recommendation; and 3) Re-construct, which ensures that each interest embedding can semantically reflect the information of representative items that relate to the corresponding interest. We demonstrate the novel forward-backward multi-interest paradigm on ComiRec, and perform extensive experiments on three real-world datasets. Empirical studies validate that Re4 helps to learn learning distinct and effective multi-interest representations.