论文标题

分散弗里德曼宇宙和同步

Dispersive Friedmann universes and synchronization

论文作者

Cotsakis, Spiros

论文摘要

我们介绍了对标准完美流体弗里德曼宇宙学的分散方面的考虑,并研究了随着流体参数的变化而出现的宇宙学解决方案的新定性行为,而零特征值出现在弗里德曼方程的线性部分中。我们发现,由于它们的堕落不足,米尔恩,平坦,爱因斯坦静态和DE Sitter溶液无法正确分叉。但是,在标准弗里德曼方程的广泛展开中包含的米尔恩和平坦宇宙的分散版具有在其标准对应物中未达到的新型长期特性。我们将这些结果应用于地平线问题,并表明与它们的双曲版本不同,将来的分散米尔恩和平面溶液完全同步,因此提供了均匀性,各向同性和因果连接性难题的解决方案。

We introduce consideration of dispersive aspects of standard perfect fluid Friedmann cosmology and study the new qualitative behaviours of cosmological solutions that emerge as the fluid parameter changes and zero eigenvalues appear in the linear part of the Friedmann equations. We find that due to their insufficient degeneracy, the Milne, flat, Einstein-static, and de Sitter solutions cannot properly bifurcate. However, the dispersive versions of Milne and flat universes contained in the versal unfolding of the standard Friedmann equations possess novel long-term properties not met in their standard counterparts. We apply these results to the horizon problem and show that unlike their hyperbolic versions, the dispersive Milne and flat solutions completely synchronize in the future, hence offering a solution to the homogeneity, isotropy, and causal connectedness puzzles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源