论文标题

通过大型语言模型适应临时任务的互动和视觉及时工程

Interactive and Visual Prompt Engineering for Ad-hoc Task Adaptation with Large Language Models

论文作者

Strobelt, Hendrik, Webson, Albert, Sanh, Victor, Hoover, Benjamin, Beyer, Johanna, Pfister, Hanspeter, Rush, Alexander M.

论文摘要

现在,可以使用最先进的神经语言模型通过零射击提示来解决临时语言任务,而无需进行监督培训。近年来,这种方法已广受欢迎,研究人员证明了提示在特定的NLP任务上实现强烈准确的提示。但是,找到新任务的提示需要实验。具有不同措辞选择的不同提示模板会导致明显的准确性差异。提示允许用户尝试及时变化,可视化及时性能,并迭代优化提示。我们开发了一个工作流程,该工作流程允许用户首先使用少量数据专注于模型反馈,然后再进入大型数据制度,该数据制度可以使用任务的定量度量来实现有希望的提示的经验基础。然后,该工具可以轻松部署新创建的临时模型。我们使用多种现实世界用例演示了Fackide(http://prompt.vizhub.ai)和我们的工作流程的实用性。

State-of-the-art neural language models can now be used to solve ad-hoc language tasks through zero-shot prompting without the need for supervised training. This approach has gained popularity in recent years, and researchers have demonstrated prompts that achieve strong accuracy on specific NLP tasks. However, finding a prompt for new tasks requires experimentation. Different prompt templates with different wording choices lead to significant accuracy differences. PromptIDE allows users to experiment with prompt variations, visualize prompt performance, and iteratively optimize prompts. We developed a workflow that allows users to first focus on model feedback using small data before moving on to a large data regime that allows empirical grounding of promising prompts using quantitative measures of the task. The tool then allows easy deployment of the newly created ad-hoc models. We demonstrate the utility of PromptIDE (demo at http://prompt.vizhub.ai) and our workflow using several real-world use cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源