论文标题

亚型感知动态无监督域的适应

Subtype-Aware Dynamic Unsupervised Domain Adaptation

论文作者

Liu, Xiaofeng, Xing, Fangxu, You, Jia, Lu, Jun, Kuo, C. -C. Jay, Fakhri, Georges El, Woo, Jonghye

论文摘要

无监督的域适应性(UDA)已成功地应用于没有标签的标记源域转移到目标域的知识。最近引入了可转移的原型网络(TPN)进一步解决了班级条件比对。在TPN中,尽管在潜在空间中明确执行了源和目标域之间的类中心的接近度,但尚未完全研究基础的细颗粒亚型结构和跨域内紧凑性。为了解决这个问题,我们提出了一种新的方法,以适应性地执行细粒度的亚型意识对准,以提高目标域的性能,而无需两个域中的子类型标签。我们方法的见解是,由于条件和标签的变化不同,班级中未标记的亚型在亚型内具有局部接近性,同时表现出不同的特征。具体而言,我们建议通过使用中间伪标签同时执行亚型的紧凑度和阶级分离。此外,我们系统地研究了有或不具有亚型数字的各种情况,并建议利用基本的亚型结构。此外,开发了一种动态队列框架,以使用替代处理方案稳步地进化了亚型簇质心。与最先进的UDA方法相比,使用多视图先天性心脏病数据以及VISDA和域的实验结果显示了我们亚型意识UDA的有效性和有效性。

Unsupervised domain adaptation (UDA) has been successfully applied to transfer knowledge from a labeled source domain to target domains without their labels. Recently introduced transferable prototypical networks (TPN) further addresses class-wise conditional alignment. In TPN, while the closeness of class centers between source and target domains is explicitly enforced in a latent space, the underlying fine-grained subtype structure and the cross-domain within-class compactness have not been fully investigated. To counter this, we propose a new approach to adaptively perform a fine-grained subtype-aware alignment to improve performance in the target domain without the subtype label in both domains. The insight of our approach is that the unlabeled subtypes in a class have the local proximity within a subtype, while exhibiting disparate characteristics, because of different conditional and label shifts. Specifically, we propose to simultaneously enforce subtype-wise compactness and class-wise separation, by utilizing intermediate pseudo-labels. In addition, we systematically investigate various scenarios with and without prior knowledge of subtype numbers, and propose to exploit the underlying subtype structure. Furthermore, a dynamic queue framework is developed to evolve the subtype cluster centroids steadily using an alternative processing scheme. Experimental results, carried out with multi-view congenital heart disease data and VisDA and DomainNet, show the effectiveness and validity of our subtype-aware UDA, compared with state-of-the-art UDA methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源