论文标题

使用基于时间的窗口使用序列分类来预测学生的绩效

Predicting student performance using sequence classification with time-based windows

论文作者

Deeva, Galina, De Smedt, Johannes, Saint-Pierre, Cecilia, Weber, Richard, De Weerdt, Jochen

论文摘要

全世界越来越多的大学使用各种形式的在线学习和混合学习作为其学术课程的一部分。此外,由于199年大流行造成的最新变化导致在线教育的重要性和无处不在。电子学习的主要优势之一不仅是改善学生的学习经验并扩大教育前景,而且还有机会通过学习分析来了解学生的学习过程。这项研究有助于通过以下方式改善和理解电子学习过程的主题。首先,我们证明可以根据从学生的行为数据中得出的顺序模式来构建准确的预测模型,这些模式能够在课程的早期识别出表现不佳的学生。其次,我们通过研究是否应基于特定于课程的顺序模式或基于更一般的行为模式的多个课程来构建每个课程的预测模型,从而研究了建立此类预测模型的特异性征用性权衡。最后,我们提出了一种捕获行为数据中时间方面的方法,并分析了其对模型预测性能的影响。我们改进的序列分类技术的结果能够以高度准确性来预测学生的表现,对于课程特异性模型的结果达到了90%。

A growing number of universities worldwide use various forms of online and blended learning as part of their academic curricula. Furthermore, the recent changes caused by the COVID-19 pandemic have led to a drastic increase in importance and ubiquity of online education. Among the major advantages of e-learning is not only improving students' learning experience and widening their educational prospects, but also an opportunity to gain insights into students' learning processes with learning analytics. This study contributes to the topic of improving and understanding e-learning processes in the following ways. First, we demonstrate that accurate predictive models can be built based on sequential patterns derived from students' behavioral data, which are able to identify underperforming students early in the course. Second, we investigate the specificity-generalizability trade-off in building such predictive models by investigating whether predictive models should be built for every course individually based on course-specific sequential patterns, or across several courses based on more general behavioral patterns. Finally, we present a methodology for capturing temporal aspects in behavioral data and analyze its influence on the predictive performance of the models. The results of our improved sequence classification technique are capable to predict student performance with high levels of accuracy, reaching 90 percent for course-specific models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源