论文标题

各向异性抛物线方程的存在和全球二阶规则性具有可变增长

Existence and global second-order regularity for anisotropic parabolic equations with variable growth

论文作者

Arora, Rakesh, Shmarev, Sergey

论文摘要

我们考虑各向异性抛物线方程\ [u_t- \ sum_ {i = 1}^nd_ {x_i} \ left(| d_ {x_i} u |^i |^i |^i | | $ω\ times(0,t)$,其中$ω\ subset \ mathbb {r}^n $,$ n \ geq 2 $是平行教。非线性$ p_i $的指数具有Lipschitz连续功能。显示的是,如果$ p_i(x,t)> \ frac {2n} {n+2} $,\ [μ= \ sup_ {q_t} \ dfrac {\ max_i p_i p_i(x,x,x,t)} | d_ {x_i} u_0 |^{\ max \ {p_i(\ cdot,0),2 \}}} \ in l^1(ω),\ quad f \ in l^2(0,t; w^{1,2}} _0(ω),\ w^{1,2} _0(ω),\] c([0,t]; l^2(ω))$带有$ | d_ {x_i} u |^{p_i} \ in L^{\ infty}(0,t; t; l^1(ω)$,$ u_t \ in L^2(q_t)$。此外,\ [| d_ {x_i} u |^{p_i+r} \在l^1(q_t)\ quad \ text {带有$ r = r = r(μ,n)> 0 $},\ qquad | quad | d_i} w^{1,2}(q_t)。 \]如果$ q_t $的横向边界上的$ p_i = 2 $,则声明对于平滑域$ω$仍然是正确的。

We consider the homogeneous Dirichlet problem for the anisotropic parabolic equation \[ u_t-\sum_{i=1}^ND_{x_i}\left(|D_{x_i}u|^{p_i(x,t)-2}D_{x_i}u\right)=f(x,t) \] in the cylinder $Ω\times (0,T)$, where $Ω\subset \mathbb{R}^N$, $N\geq 2$, is a parallelepiped. The exponents of nonlinearity $p_i$ are given Lipschitz-continuous functions. It is shown that if $p_i(x,t)>\frac{2N}{N+2}$, \[ μ=\sup_{Q_T}\dfrac{\max_i p_i(x,t)}{\min_i p_i(x,t)}<1+\dfrac{1}{N}, \quad |D_{x_i}u_0|^{\max\{p_i(\cdot,0),2\}}\in L^1(Ω),\quad f\in L^2(0,T;W^{1,2}_0(Ω)), \] then the problem has a unique solution $u\in C([0,T];L^2(Ω))$ with $|D_{x_i} u|^{p_i}\in L^{\infty}(0,T;L^1(Ω))$, $u_t\in L^2(Q_T)$. Moreover, \[ |D_{x_i}u|^{p_i+r}\in L^1(Q_T)\quad \text{with some $r=r(μ,N)>0$},\qquad |D_{x_i}u|^{\frac{p_i-2}{2}}D_{x_i}u\in W^{1,2}(Q_T). \] The assertions remain true for a smooth domain $Ω$ if $p_i=2$ on the lateral boundary of $Q_T$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源