论文标题

近似双重稳定的搜索相关性估计

Approximated Doubly Robust Search Relevance Estimation

论文作者

Zou, Lixin, Hao, Changying, Cai, Hengyi, Cheng, Suqi, Wang, Shuaiqiang, Ye, Wenwen, Cheng, Zhicong, Gu, Simiu, Yin, Dawei

论文摘要

从稀疏,有偏的点击日志中提取查询文档相关性是Web搜索系统中最基本的任务之一。先前的艺术主要学习具有查询和文档语义特征的相关性判断模型,并从点击日志直接忽略了反事实相关性评估。尽管学习的语义匹配模型只要有语义功能可用,但可以为尾部查询提供相关信号。但是,这种范式缺乏在内置地调整偏见相关性估计的能力,每当它与大量隐式用户反馈冲突时。相反,反事实评估方法通过足够的点击信息确保无偏见的相关性估计。但是,他们遭受了由长尾查询分布引起的稀疏甚至缺少点击。 在本文中,我们建议统一对具有各种受欢迎的搜索查询的无偏见相关性估算的反事实评估和学习方法。具体而言,从理论上讲,我们以低偏差和差异的形式开发了一个双重稳健的估计器,该估计器有意结合了现有相关性评估和学习方法的好处。我们进一步实例化了BIADU搜索中提出的无偏见的相关性估计框架,并采用了有关点击行为跟踪和在线相关性估计的全面实用解决方案,并具有近似的深神经网络。最后,我们提出了广泛的经验评估,以验证我们提出的框架的有效性,发现它在实践中是强大的,并且可以大大提高在线排名。

Extracting query-document relevance from the sparse, biased clickthrough log is among the most fundamental tasks in the web search system. Prior art mainly learns a relevance judgment model with semantic features of the query and document and ignores directly counterfactual relevance evaluation from the clicking log. Though the learned semantic matching models can provide relevance signals for tail queries as long as the semantic feature is available. However, such a paradigm lacks the capability to introspectively adjust the biased relevance estimation whenever it conflicts with massive implicit user feedback. The counterfactual evaluation methods, on the contrary, ensure unbiased relevance estimation with sufficient click information. However, they suffer from the sparse or even missing clicks caused by the long-tailed query distribution. In this paper, we propose to unify the counterfactual evaluating and learning approaches for unbiased relevance estimation on search queries with various popularities. Specifically, we theoretically develop a doubly robust estimator with low bias and variance, which intentionally combines the benefits of existing relevance evaluating and learning approaches. We further instantiate the proposed unbiased relevance estimation framework in Baidu search, with comprehensive practical solutions designed regarding the data pipeline for click behavior tracking and online relevance estimation with an approximated deep neural network. Finally, we present extensive empirical evaluations to verify the effectiveness of our proposed framework, finding that it is robust in practice and manages to improve online ranking performance substantially.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源