论文标题

使用转移学习的葡萄疾病检测

Grapes disease detection using transfer learning

论文作者

Jain, Bhavya, Periyasamy, Sasikumar

论文摘要

植物中疾病的早期和精确诊断可以帮助发展早期治疗技术。植物疾病降低了农作物的数量和质量,从而对粮食安全构成威胁,并造成了巨大的经济损失。传统上,手动进行识别,这是不准确,耗时且昂贵的。本文提出了一个简单有效的模型,可以使用转移学习检测葡萄叶疾病。预先训练的深卷积神经网络用作特征提取器和随机森林作为分类器。模型的性能是根据准确性,精度,回忆和F1分数来解释的。总共使用了四个不同类别的1003张图像,并获得了91.66%的精度。

Early and precise diagnosis of diseases in plants can help to develop an early treatment technique. Plant diseases degrade both the quantity and quality of crops, thus posing a threat to food security and resulting in huge economic losses. Traditionally identification is performed manually, which is inaccurate, time-consuming, and expensive. This paper presents a simple and efficient model to detect grapes leaf diseases using transfer learning. A pre-trained deep convolutional neural network is used as a feature extractor and random forest as a classifier. The performance of the model is interpreted in terms of accuracy, precision, recall, and f1 score. Total 1003 images of four different classes are used and 91.66% accuracy is obtained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源