论文标题
蜂窝状晶格上的易于平面各向异性 - 交换磁铁:量子效应并与之打交道
Easy-plane anisotropic-exchange magnets on a honeycomb lattice: quantum effects and dealing with them
论文作者
论文摘要
我们在{\ it易于平面}限制中的蜂窝晶格上的扩展吉森堡模型的相图和其他特性提供了分析和数值见解,其中仅在属于磁离子平面的旋转成分之间相互作用。此参数子空间允许对有序阶段中的自旋激发及其通用特征进行急需的系统{\ IT定量}研究。具体而言,我们证明,在此限制下,可以始终考虑零视场曲折和场偏置相中的镁相互作用。对于名义极化阶段,我们提出了在关键场上发生的非物理差异的正则化,并困扰着这类模型中的$ 1/s $ appproximation。对于探索的参数子空间,扩展的Kitaev-Heisenberg模型的标准参数化术语(例如$ k $,$ j $和$γ$)都是重要的,这使得提供的考虑因素与较宽的参数空间有关。临界临界点附近的动力结构因子通过显示出使人联想到$α$ -rucl $ _3 $中观察到的特征来说明了这一相关性,强调它们不是唯一的,并且应该在模型的各种参数中是共同的,并且通过扩展名与其他材料相关。
We provide analytical and numerical insights into the phase diagram and other properties of the extended Kitaev-Heisenberg model on the honeycomb lattice in the {\it easy-plane} limit, in which interactions are only between spin components that belong to the plane of magnetic ions. This parameter subspace allows for a much-needed systematic {\it quantitative} investigation of spin excitations in the ordered phases and of their generic features. Specifically, we demonstrate that in this limit one can consistently take into account magnon interactions in both zero-field zigzag and field-polarized phases. For the nominally polarized phase, we propose a regularization of the unphysical divergences that occur at the critical field and are plaguing the $1/S$-approximation in this class of models. For the explored parameter subspace, all symmetry-allowed terms of the standard parametrization of the extended Kitaev-Heisenberg model, such as $K$, $J$, and $Γ$, are significant, making the offered consideration relevant to a much wider parameter space. The dynamical structure factor near paramagnetic critical point illustrates this relevance by showing features that are reminiscent of the ones observed in $α$-RuCl$_3$, underscoring that they are not unique and should be common to a wide range of parameters of the model and, by an extension, to other materials.