论文标题
RIS辅助定位算法和分析:解决非高斯角度估计错误
RIS-Aided Localization Algorithm and Analysis: Tackling Non-Gaussian Angle Estimation Errors
论文作者
论文摘要
可重新配置的智能表面(RIS)辅助本地化系统越来越多地认可,以提高物联网(IoT)网络的准确性。然而,主要的研究倾向于在角度估计误差(AEE)中假设高斯分布,或者直接忽略AEE的影响,从而忽略其在现实世界中的非高斯性质,尤其是使用不同的估计方法(例如,2D-DFT Algorithm)。在解决这一监督时,本文探讨了RIS AID的本地化系统的设计和性能分析,特别是针对非高斯AEE的设计和性能分析。我们采用经典的两步三维(3D)本地化方案来确定移动用户(MU)的位置。最初,我们使用不同的方法估计到达的角度(AOA)和到达的时间差(TDOA),分别导致非高斯和高斯错误。随后,为了适应AOAS错误的非高斯性质和TDOA错误的高斯性质,我们设计了多个加权最小二乘(MWLS)算法以准确定位MU。此外,我们的研究还包括一个独特的偏见分析,用于评估在高斯和非高斯错误下所提出的定位算法的性能。仿真结果证明了所提出的MWLS算法和偏置分析方法的有效性。
Reconfigurable intelligent surface (RIS)-aided localization systems are increasingly recognized for enhancing accuracy in internet of things (IoT) networks. However, prevailing studies tend to either assume a Gaussian distribution for angle estimation error (AEE) or directly neglect the impact of the AEE, overlooking its non-Gaussian nature in real-world scenarios, particularly with diverse estimation methods (e.g., 2D-DFT algorithm). Addressing this oversight, this paper explores the design and performance analysis of RIS-aided localization systems, specifically tackling non-Gaussian AEE. We adopt the classical two-step three-dimensional (3D) localization scheme to determine the position of mobile user (MU). Initially, we estimate angles of arrival (AoAs) and time differences of arrival (TDoAs) at the RIS using different methods, resulting in non-Gaussian and Gaussian errors, respectively. Subsequently, to accommodate the non-Gaussian nature of AoAs errors and the Gaussian character of TDoA errors, we design a multiple weighted least squares (mWLS) algorithm to accurately localize MU. Besides, our research also includes a unique bias analysis for evaluating the performance of the proposed localization algorithm under both Gaussian and non-Gaussian errors. Simulation results demonstrate the effectiveness of both the proposed mWLS algorithm and the bias analysis methodology.