论文标题

相关的弧定向问题

The Correlated Arc Orienteering Problem

论文作者

Agarwal, Saurav, Akella, Srinivas

论文摘要

本文介绍了相关的弧形方向问题(CAOP),其中的任务是找到机器人团队的路线,以最大程度地收集与环境中功能相关的奖励的收集。这些功能可以是一维或环境中的点,并且可以具有空间相关性,即访问环境中的特征可能会提供与相关功能相关的奖励的一部分。机器人在环境环境时会产生成本,并且路线的总成本受到资源限制(例如电池寿命或操作时间)的限制。由于环境通常很大,我们允许多个仓库在机器人必须启动和结束路线的地方。 CAOP概括了相关的定向问题(COP),其中奖励仅与点特征相关联以及ARC定向急救问题(AOP),其中奖励与奖励没有空间相关。我们制定了一个混合整数二次程序(MIQP),该程序正式化了问题并提供最佳的解决方案。但是,这个问题是NP-HARD,因此我们开发了一种有效的贪婪的建设性算法。我们用两种不同的应用说明了问题:甲烷气体泄漏检测和道路网络覆盖范围的信息路径计划。

This paper introduces the correlated arc orienteering problem (CAOP), where the task is to find routes for a team of robots to maximize the collection of rewards associated with features in the environment. These features can be one-dimensional or points in the environment, and can have spatial correlation, i.e., visiting a feature in the environment may provide a portion of the reward associated with a correlated feature. A robot incurs costs as it traverses the environment, and the total cost for its route is limited by a resource constraint such as battery life or operation time. As environments are often large, we permit multiple depots where the robots must start and end their routes. The CAOP generalizes the correlated orienteering problem (COP), where the rewards are only associated with point features, and the arc orienteering problem (AOP), where the rewards are not spatially correlated. We formulate a mixed integer quadratic program (MIQP) that formalizes the problem and gives optimal solutions. However, the problem is NP-hard, and therefore we develop an efficient greedy constructive algorithm. We illustrate the problem with two different applications: informative path planning for methane gas leak detection and coverage of road networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源