论文标题

学习ACOPF的铲斗主动采样

Bucketized Active Sampling for Learning ACOPF

论文作者

Klamkin, Michael, Tanneau, Mathieu, Mak, Terrence W. K., Van Hentenryck, Pascal

论文摘要

本文考虑了最佳功率流(OPF)的优化代理,即近似于OPF的输入/输出关系的机器学习模型。最近的工作重点是表明此类代理可能具有高忠诚。但是,他们的培训需要大量数据,每个实例都需要(离线)解决OPF。为了满足市场清除应用程序的要求,本文提出了桶装主动采样(BAS),这是一个新型的主动学习框架,旨在培训在一个时间限制内的最佳OPF代理。 BAS分区将输入域分配到存储桶中,并使用采集函数来确定接下来在哪里采样。通过将相同的分区应用于验证集,BAS在选择未标记的样本时利用标有验证样本。 BAS还依靠自适应学习率,随着时间的推移会增加和下降。实验结果证明了BAS的好处。

This paper considers optimization proxies for Optimal Power Flow (OPF), i.e., machine-learning models that approximate the input/output relationship of OPF. Recent work has focused on showing that such proxies can be of high fidelity. However, their training requires significant data, each instance necessitating the (offline) solving of an OPF. To meet the requirements of market-clearing applications, this paper proposes Bucketized Active Sampling (BAS), a novel active learning framework that aims at training the best possible OPF proxy within a time limit. BAS partitions the input domain into buckets and uses an acquisition function to determine where to sample next. By applying the same partitioning to the validation set, BAS leverages labeled validation samples in the selection of unlabeled samples. BAS also relies on an adaptive learning rate that increases and decreases over time. Experimental results demonstrate the benefits of BAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源