论文标题

Nesterov平滑以进行采样而无需平滑度

Nesterov smoothing for sampling without smoothness

论文作者

Fan, Jiaojiao, Yuan, Bo, Liang, Jiaming, Chen, Yongxin

论文摘要

我们研究了$ \ Mathbb {r}^d $中的目标分布的采样问题,其潜力不光滑。与平滑电势的采样问题相比,由于缺乏平滑度,该问题要少得多。在本文中,我们通过使用类似于Nesterov平滑的技术来通过平滑电位来近似平滑电位,为一类非平滑电势提出一种新颖的采样算法。然后,我们利用平滑电势上的采样算法来从原始的非平滑电位中生成近似样品。我们选择适当的平滑强度,以确保平滑和非平滑分布之间的距离很小,从而确保算法的准确性。因此,我们基于现有的平滑采样分析获得了非反应收敛结果。我们在合成示例上验证了我们的收敛结果,并应用我们的方法来改善贝叶斯推断在现实世界中的最差表现。

We study the problem of sampling from a target distribution in $\mathbb{R}^d$ whose potential is not smooth. Compared with the sampling problem with smooth potentials, this problem is much less well-understood due to the lack of smoothness. In this paper, we propose a novel sampling algorithm for a class of non-smooth potentials by first approximating them by smooth potentials using a technique that is akin to Nesterov smoothing. We then utilize sampling algorithms on the smooth potentials to generate approximate samples from the original non-smooth potentials. We select an appropriate smoothing intensity to ensure that the distance between the smoothed and un-smoothed distributions is minimal, thereby guaranteeing the algorithm's accuracy. Hence we obtain non-asymptotic convergence results based on existing analysis of smooth sampling. We verify our convergence result on a synthetic example and apply our method to improve the worst-case performance of Bayesian inference on a real-world example.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源