论文标题
使用光力耦合振荡器的高频扭转运动转导
High frequency torsional motion transduction using optomechanical coupled oscillators
论文作者
论文摘要
使用光测量对象的运动对于探测力和场的操作机械传感器至关重要。腔光学系统将机械谐振器嵌入光谐振器内。这增强了光力测量的灵敏度,但前提是机械谐振器不会破坏光腔的性能。例如,由光学吸收材料或几何形状不具有合适的空间对称性制成的谐振器的腔光机电检测是具有挑战性的。在这里,我们演示了一个系统,该系统通过将其转换为光子晶体腔的振动来克服测量纳米风险的高频扭曲运动的挑战。然后,该腔的光学机械读数可以测量纳米台面的扭转共振$ 5.1 \ times 10^{ - 21} -1.2 \ times 10^{ - 19} { - 19} \,\ \ \ text {nm}/\ sqrt {\ sqrt {\ sqrt {\ sqrt {\ text {\ fext {\ hz {hz {纳米风险可以配备磁性纳米结构或跨膜,而不会影响腔的光学特性,从而使系统适用于扭矩磁力测定法和结构化光感应。
Using light to measure an object's motion is central to operating mechanical sensors that probe forces and fields. Cavity optomechanical systems embed mechanical resonators inside optical resonators. This enhances the sensitivity of optomechanical measurements, but only if the mechanical resonator does not spoil the properties of the optical cavity. For example, cavity optomechanical detection of resonators made from optically absorbing materials, or whose geometry does not possess suitable spatial symmetry, is challenging. Here we demonstrate a system that overcomes challenges in measuring high-frequency twisting motion of a nanodisk by converting them to vibrations of a photonic crystal cavity. Optomechanical readout of the cavity then enables measurement of the nanodisk's torsional resonances with sensitivity $5.1\times 10^{-21}-1.2\times 10^{-19}\,\text{Nm}/\sqrt{\text{Hz}}$ for a mechanical frequency range of 5--800 MHz. The nanodisk can be outfitted with magnetic nanostructures or metasurfaces without affecting the optical properties of the cavity, making the system suitable for torque magnetometry and structured light sensing.