论文标题
Archimedes符合隐私:在最小假设下私下估算高维度的分位数
Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions
论文作者
论文摘要
在过去的几年中,在隐私限制下的高维统计数据上进行了大量工作,主要遵循两项主要工作线:``最坏情况''线,这不会对输入数据进行任何分布假设;以及``强假设''线,假定数据是从特定家庭(例如Subgaussian分布)生成的。在这项工作中,我们采用了中间立场,获得具有多项式样品复杂性的新的差异私有算法,以估计高维度中的分位数,并估算高tukey深度的高度和采样点,所有这些都在非常温和的分布假设下工作。从技术的角度来看,我们的工作依赖于深厚的鲁棒性导致凸几何文献,证明了如何在私人环境中使用此类结果。 我们感兴趣的主要对象是(凸)浮动体(FB),这是一个回到阿基米德的概念,这是一个坚固且研究良好的Quartial interquantile范围的高维类似物。我们展示了一个人如何私下来以及多个样本,(a)通过利用Fb的施气纳点的稳健性来输出Fb的近似内部点 - 例如``典型用户''; (b)以多个多种样本为代价,通过构建私人噪声投影甲骨文来产生近似均匀的样品。
The last few years have seen a surge of work on high dimensional statistics under privacy constraints, mostly following two main lines of work: the ``worst case'' line, which does not make any distributional assumptions on the input data; and the ``strong assumptions'' line, which assumes that the data is generated from specific families, e.g., subgaussian distributions. In this work we take a middle ground, obtaining new differentially private algorithms with polynomial sample complexity for estimating quantiles in high-dimensions, as well as estimating and sampling points of high Tukey depth, all working under very mild distributional assumptions. From the technical perspective, our work relies upon deep robustness results in the convex geometry literature, demonstrating how such results can be used in a private context. Our main object of interest is the (convex) floating body (FB), a notion going back to Archimedes, which is a robust and well studied high-dimensional analogue of the interquantile range. We show how one can privately, and with polynomially many samples, (a) output an approximate interior point of the FB -- e.g., ``a typical user'' in a high-dimensional database -- by leveraging the robustness of the Steiner point of the FB; and at the expense of polynomially many more samples, (b) produce an approximate uniform sample from the FB, by constructing a private noisy projection oracle.