论文标题

在高能光子列表中识别弥散的空间结构

Identifying diffuse spatial structures in high-energy photon lists

论文作者

Fan, Minjie, Wang, Jue, Kashyap, Vinay L., Lee, Thomas C. M., van Dyk, David A., Zezas, Andreas

论文摘要

通常,来自高能观测的数据通常作为光子事件列表获得。此类数据的一个常见分析任务是确定是否存在分散发射,并估算其表面亮度,即使存在可能被超级置换的点源。我们已经开发了一种新型的非参数列表列表分割算法,以将视野分为不同的发射组件。我们直接使用光子位置数据,而无需将它们汇总到图像中。我们首先是从观察到的光子位置的Voronoi Tessellation中构造图形的,然后使用种子种植的新适应片段生长段,我们调用了生长在图上的种子区域,此后总体方法命名为Srgong。从一组种子位置开始,这会导致一个过度分割的数据集,然后使用贪婪的算法合并了相邻段以将模型比较统计量最小化;我们使用贝叶斯信息标准。使用SRGONG,我们能够在数据中识别数据中的点状和扩散的扩展源。我们使用模拟验证了SRGONG,表明它能够辨别出不规则形状的低表面亮度发射结构以及具有强度与典型X射线数据相当的点样源。我们证明了Srgong在天线星系的Chandra数据上的使用,并表明它适当地分离了复杂的结构。

Data from high-energy observations are usually obtained as lists of photon events. A common analysis task for such data is to identify whether diffuse emission exists, and to estimate its surface brightness, even in the presence of point sources that may be superposed. We have developed a novel non-parametric event list segmentation algorithm to divide up the field of view into distinct emission components. We use photon location data directly, without binning them into an image. We first construct a graph from the Voronoi tessellation of the observed photon locations and then grow segments using a new adaptation of seeded region growing, that we call Seeded Region Growing on Graph, after which the overall method is named SRGonG. Starting with a set of seed locations, this results in an over-segmented dataset, which SRGonG then coalesces using a greedy algorithm where adjacent segments are merged to minimize a model comparison statistic; we use the Bayesian Information Criterion. Using SRGonG we are able to identify point-like and diffuse extended sources in the data with equal facility. We validate SRGonG using simulations, demonstrating that it is capable of discerning irregularly shaped low surface-brightness emission structures as well as point-like sources with strengths comparable to that seen in typical X-ray data. We demonstrate SRGonG's use on the Chandra data of the Antennae galaxies, and show that it segments the complex structures appropriately.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源