论文标题

RIS辅助FD系统的深入增强学习:单个或分布式RIS?

Deep Reinforcement Learning for RIS-Assisted FD Systems: Single or Distributed RIS?

论文作者

Faisal, Alice, Al-Nahhal, Ibrahim, Dobre, Octavia A., Ngatched, Telex M. N.

论文摘要

本文研究了可重新配置的智能表面(RIS)辅助全双工多输入单输出无线系统,在该系统中,优化了波束成形和RIS相移,以最大程度地提高单个和分布式RIS部署方案的总和率。根据链接的质量,通过三种实践场景研究了使用单个或分布式RIS部署方案的偏爱。推导了封闭形式的解决方案以优化波束成型向量,并提出了一种新颖的深钢筋学习(DRL)算法来优化RIS相移。仿真结果表明,部署方案的选择取决于场景和链接的质量。进一步表明,与单个和分布式RIS部署方案中的非优化方案相比,所提出的算法可显着提高总和率。此外,与以前的作品中的近似推导相比,所提出的波束形成派可以取得显着改善。最后,复杂性分析证实,与文献中的DRL算法相比,提出的DRL算法降低了计算复杂性。

This paper investigates reconfigurable intelligent surface (RIS)-assisted full-duplex multiple-input single-output wireless system, where the beamforming and RIS phase shifts are optimized to maximize the sum-rate for both single and distributed RIS deployment schemes. The preference of using the single or distributed RIS deployment scheme is investigated through three practical scenarios based on the links' quality. The closed-form solution is derived to optimize the beamforming vectors and a novel deep reinforcement learning (DRL) algorithm is proposed to optimize the RIS phase shifts. Simulation results illustrate that the choice of the deployment scheme depends on the scenario and the links' quality. It is further shown that the proposed algorithm significantly improves the sum-rate compared to the non-optimized scenario in both single and distributed RIS deployment schemes. Besides, the proposed beamforming derivation achieves a remarkable improvement compared to the approximated derivation in previous works. Finally, the complexity analysis confirms that the proposed DRL algorithm reduces the computation complexity compared to the DRL algorithm in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源