论文标题

Kaluza的引理的多变量版本

Multivariable versions of a lemma of Kaluza's

论文作者

Richter, Stefan, Sautel, Jesse

论文摘要

令$ d \ in \ mathbb {n} $和$ f(z)= \ sum_ {α\ in \ mathbb {n} _0^d}c_αz^α$是$ z =(z_1,\ dots,z_d)$中的收敛性多变量功率系列。在本文中,我们介绍了两个条件$c_α$,这意味着$ f(z)= \ frac {1} {1- \ sum_ {α\ in \ mathbb {n} n} _0^d}q_αz^α} $ forn-ne-ne-negative un-negative系数$q_α$ $q_α$。如果$ d = 1 $,那么我们的两个结果都会减少到卡鲁扎的引理。对于$ d> 1 $,我们提出示例,以表明我们的两个条件彼此独立。事实证明,类型$$ f(z)= \ int _ {[0,1]^d} \ frac {1} {1} {1- \ sum_ {j = 1}^d t_j z_j z_j} d t_j z_j}dμ(t)$ $每当我们的条件下,每当$ d $dμ(t)=dμ_1(t _1(t _1)$ d \ d \ d \ d d d d d y d d d d y d d d d y d d d d y d d d d d d d d d d d d ddμ_1(t _1)是$ [0,1] $上的概率测量$μ_j$的产物。 我们的结果适用于Nevanlinna-Pick核的理论。

Let $d\in \mathbb{N}$ and $f(z)= \sum_{α\in \mathbb{N}_0^d} c_αz^α$ be a convergent multivariable power series in $z=(z_1,\dots,z_d)$. In this paper we present two conditions on the positive coefficients $c_α$ which imply that $f(z)=\frac{1}{1-\sum_{α\in \mathbb{N}_0^d} q_αz^α}$ for non-negative coefficients $q_α$. If $d=1$, then both of our results reduce to a lemma of Kaluza's. For $d>1$ we present examples to show that our two conditions are independent of one another. It turns out that functions of the type $$f(z)= \int_{[0,1]^d} \frac{1}{1-\sum_{j=1}^d t_j z_j} dμ(t)$$ satisfy one of our conditions, whenever $dμ(t) = dμ_1(t_1) \times \dots \times dμ_d(t_d)$ is a product of probability measures $μ_j$ on $[0,1]$. Our results have applications to the theory of Nevanlinna-Pick kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源