论文标题

应用指数渐近学的复发方面

Resurgent aspects of applied exponential asymptotics

论文作者

Crew, Samuel, Trinh, Philippe H.

论文摘要

在许多物理问题中,重要的是捕获超出典型渐近扩张的全部端口的指数效果。收集后,完整的扩展称为跨系列。应用指数渐近学在开发用于研究跨系列扩展的主要指数的实用工具方面取得了巨大成功,通常是在奇异的非线性扰动差异或积分方程的背景下。独立于应用指数的渐近学,存在着一条被称为Écalle的复苏理论的密切相关的发展线,该线描述了跨系列与一类称为复苏函数的一类全体形态函数之间的联系。通过Borel重新召集的过程实现了此连接。然而,与奇异的扰动问题相反,Borel重新召集和Écalle的复活理论主要集中在非参数渐近扩张(即没有参数的微分方程)上。这些后一个领域与应用指数渐近学之间的关系尚未得到彻底检查,部分原因是语言和重点的差异。在这项工作中,我们通过在指数渐近学中为偏离骨平面上的指数渐近学中的阶乘驱动器ANSATZ开发替代框架来探索这些连接。我们的工作阐明了应用指数渐近学中使用的许多要素,例如对范戴克规则的启发式使用以及fortorial-over-power-power ansatzes的普遍性。在此过程中,我们提供了许多有用的工具,用于探测已知在应用中已知的指数渐近学中的更多病理问题。这包括合并奇异性,嵌套边界层和更普遍的晚期行为的问题。

In many physical problems, it is important to capture exponentially-small effects that lie beyond-all-orders of a typical asymptotic expansion; when collected, the full expansion is known as the trans-series. Applied exponential asymptotics has been enormously successful in developing practical tools for studying the leading exponentials of a trans-series expansion, typically in the context of singular non-linear perturbative differential or integral equations. Separate to applied exponential asymptotics, there exists a closely related line of development known as Écalle's theory of resurgence, which describes the connection between trans-series and a certain class of holomorphic functions known as resurgent functions. This connection is realised through the process of Borel resummation. However, in contrast to singularly perturbed problems, Borel resummation and Écalle's resurgence theory have mainly focused on non-parametric asymptotic expansions (i.e. differential equations without a parameter). The relationships between these latter areas and applied exponential asymptotics has not been thoroughly examined, partially due to differences in language and emphasis. In this work, we explore these connections by developing an alternative framework for the factorial-over-power ansatz in exponential asymptotics that is centred on the Borel plane. Our work clarifies a number of elements used in applied exponential asymptotics, such as the heuristic use of Van Dyke's rule and the universality of factorial-over-power ansatzes. Along the way, we provide a number of useful tools for probing more pathological problems in exponential asymptotics known to arise in applications; this includes problems with coalescing singularities, nested boundary layers, and more general late-term behaviours.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源