论文标题
左旋素蛋白 - 培训适合分裂平衡问题
Levitin-Polyak Well-posedness for Split Equilibrium Problems
论文作者
论文摘要
适应性良好的概念吸引了许多非线性分析领域中许多研究人员的注意,因为它允许探索不知道和/或计算很难计算的问题的问题。粗略地说,对于给定的问题,适当的性质保证了通过迭代方法与精确解决方案的融合。因此,在本文中,我们将左旋素蛋白培养精的概念扩展到了真正的Banach空间中的平衡问题。特别是,我们通过扰动建立了左旋素蛋白 - polyak良好性的度量表征,并通过扰动对分裂平衡问题的扰动以及其溶液的存在和独特性,也表现出了左旋蛋白蛋白polyak良好性之间的等效性。
The notion of well-posedness has drawn the attention of many researchers in the field of nonlinear analysis, as it allows to explore problems in which exact solutions are not known and/or computationally hard to compute. Roughly speaking, for a given problem, well-posedness guarantees the convergence of approximations to exact solutions via an iterative method. Thus, in this paper we extend the concept of Levitin-Polyak well-posedness to split equilibrium problems in real Banach spaces. In particular, we establish a metric characterization of Levitin-Polyak well-posedness by perturbations and also show an equivalence between Levitin-Polyak well-posedness by perturbations for split equilibrium problems and the existence and uniqueness of their solutions.