论文标题

Z-Bert-A:未知意图检测的零射管管道

Z-BERT-A: a zero-shot Pipeline for Unknown Intent detection

论文作者

Comi, Daniele, Christofidellis, Dimitrios, Piazza, Pier Francesco, Manica, Matteo

论文摘要

意图发现是自然语言处理中的至关重要的任务,并且与各种工业应用越来越相关。从用户输入中识别出新颖的,看不见的意图仍然是该领域最大的挑战之一。本文中,我们提出了零射击 - 伯特 - 适配器,这是一种两阶段的方法,用于依靠变压器体系结构进行多种语言意图发现,并用适配器进行了微调。我们训练自然语言推理(NLI)的模型,然后在多种语言的零拍设置中执行未知的意图分类。在我们的评估中,我们首先在已知类别的自适应微调后分析模型的质量。其次,我们评估其在将意图分类作为NLI任务中的表现。最后,我们在看不见的类别上测试了模型的零射击性能,显示了如何通过与基础真实的语义上相似的意图(即使不是平等)产生语义上相似的意图来有效地执行意图发现。我们的实验表明,零击伯特 - 适配器如何在两个零射击设置中优于各种基准:已知的意图分类和看不见的意图发现。拟议的管道具有在客户服务中广泛应用的潜力。它可以使用轻量级模型来实现自动化动态分流,该模型可以轻松地在各种业务场景中进行部署和缩放,这与大型语言模型不同。零射击 - 伯特 - 适配器代表了一种创新的多语言方法,以实现意图发现,从而实现了在线新颖的意图。可以通过以下链接获得实施管道和我们编译的新数据集的Python软件包:https://github.com/gt4sd/zero-sero-shot-bert-bert-adapters。

Intent discovery is a crucial task in natural language processing, and it is increasingly relevant for various of industrial applications. Identifying novel, unseen intents from user inputs remains one of the biggest challenges in this field. Herein, we propose Zero-Shot-BERT-Adapters, a two-stage method for multilingual intent discovery relying on a Transformer architecture, fine-tuned with Adapters. We train the model for Natural Language Inference (NLI) and later perform unknown intent classification in a zero-shot setting for multiple languages. In our evaluation, we first analyze the quality of the model after adaptive fine-tuning on known classes. Secondly, we evaluate its performance in casting intent classification as an NLI task. Lastly, we test the zero-shot performance of the model on unseen classes, showing how Zero-Shot-BERT-Adapters can effectively perform intent discovery by generating semantically similar intents, if not equal, to the ground-truth ones. Our experiments show how Zero-Shot-BERT-Adapters outperforms various baselines in two zero-shot settings: known intent classification and unseen intent discovery. The proposed pipeline holds the potential for broad application in customer care. It enables automated dynamic triage using a lightweight model that can be easily deployed and scaled in various business scenarios, unlike large language models. Zero-Shot-BERT-Adapters represents an innovative multi-language approach for intent discovery, enabling the online generation of novel intents. A Python package implementing the pipeline and the new datasets we compiled are available at the following link: https://github.com/GT4SD/zero-shot-bert-adapters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源