论文标题

全球气候合作的人工智能:对全球气候谈判,协议和大米N的长期合作进行建模

AI for Global Climate Cooperation: Modeling Global Climate Negotiations, Agreements, and Long-Term Cooperation in RICE-N

论文作者

Zhang, Tianyu, Williams, Andrew, Phade, Soham, Srinivasa, Sunil, Zhang, Yang, Gupta, Prateek, Bengio, Yoshua, Zheng, Stephan

论文摘要

全球全球合作对于限制全球温度的升高至关重要,同时持续经济发展,例如减少严重的不平等或实现长期经济增长。与N战略代理进行缓解气候变化的长期合作提出了一个复杂的游戏理论问题。例如,代理商可以谈判并达成气候协议,但是没有中央权力可以执行遵守这些协议。因此,设计谈判和协议框架以促进合作,允许所有代理人达到其个人政策目标并激励长期遵守,这一点至关重要。这是一个跨学科的挑战,要求在机器学习,经济学,气候科学,法律,政策,道德和其他领域进行研究人员之间的合作。特别是,我们认为机器学习是解决该领域复杂性的关键工具。为了促进这项研究,在这里,我们介绍了一个多区域综合评估模型,模拟全球气候和经济,可用于设计和评估不同谈判和协议框架的战略成果。我们还描述了如何使用多方强化学习使用米-N来训练理性剂。该框架是全球气候合作的基础,这是一个工作组协作和气候谈判和协议设计的竞争。在这里,我们邀请科学界使用Rice-N,机器学习,经济直觉和其他领域知识来设计和评估其解决方案。可以在www.ai4climatecoop.org上找到更多信息。

Comprehensive global cooperation is essential to limit global temperature increases while continuing economic development, e.g., reducing severe inequality or achieving long-term economic growth. Achieving long-term cooperation on climate change mitigation with n strategic agents poses a complex game-theoretic problem. For example, agents may negotiate and reach climate agreements, but there is no central authority to enforce adherence to those agreements. Hence, it is critical to design negotiation and agreement frameworks that foster cooperation, allow all agents to meet their individual policy objectives, and incentivize long-term adherence. This is an interdisciplinary challenge that calls for collaboration between researchers in machine learning, economics, climate science, law, policy, ethics, and other fields. In particular, we argue that machine learning is a critical tool to address the complexity of this domain. To facilitate this research, here we introduce RICE-N, a multi-region integrated assessment model that simulates the global climate and economy, and which can be used to design and evaluate the strategic outcomes for different negotiation and agreement frameworks. We also describe how to use multi-agent reinforcement learning to train rational agents using RICE-N. This framework underpinsAI for Global Climate Cooperation, a working group collaboration and competition on climate negotiation and agreement design. Here, we invite the scientific community to design and evaluate their solutions using RICE-N, machine learning, economic intuition, and other domain knowledge. More information can be found on www.ai4climatecoop.org.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源