论文标题
Dueta:通过有效的图形学习在百度地图的ETA预测,交通拥堵传播模式建模
DuETA: Traffic Congestion Propagation Pattern Modeling via Efficient Graph Learning for ETA Prediction at Baidu Maps
论文作者
论文摘要
估计到达时间(ETA)预测时间(也称为旅行时间估计)是针对各种智能运输应用程序(例如导航,路线规划和乘车服务)的基本任务。为了准确预测一条路线的旅行时间,必须考虑到上下文和预测因素,例如空间 - 周期性的互动,驾驶行为和交通拥堵传播的推断。先前在百度地图上部署的ETA预测模型已经解决了时空相互作用(constgat)和驾驶行为(SSML)的因素。在这项工作中,我们专注于建模交通拥堵传播模式以提高ETA性能。交通拥堵的传播模式建模具有挑战性,它需要对影响区域的影响区域,以及延迟变化的累积影响,随着路线网络上的交通事件而引起的延迟变化。在本文中,我们提出了一个实用的工业级ETA预测框架,名为Dueta。具体而言,我们基于交通模式的相关性构建了对拥堵敏感的图,并开发了一种路线感知的图形变压器,以直接学习路段的长距离相关性。该设计使Dueta可以捕获空间遥远但与交通状况高度相关的路段对之间的相互作用。广泛的实验是在从百度地图收集的大型现实世界数据集上进行的。实验结果表明,ETA预测可以从学习的交通拥堵传播模式中显着受益。此外,Dueta已经在Baidu Maps的生产中部署,每天都有数十亿个请求。这表明Dueta是用于大规模ETA预测服务的工业级和强大的解决方案。
Estimated time of arrival (ETA) prediction, also known as travel time estimation, is a fundamental task for a wide range of intelligent transportation applications, such as navigation, route planning, and ride-hailing services. To accurately predict the travel time of a route, it is essential to take into account both contextual and predictive factors, such as spatial-temporal interaction, driving behavior, and traffic congestion propagation inference. The ETA prediction models previously deployed at Baidu Maps have addressed the factors of spatial-temporal interaction (ConSTGAT) and driving behavior (SSML). In this work, we focus on modeling traffic congestion propagation patterns to improve ETA performance. Traffic congestion propagation pattern modeling is challenging, and it requires accounting for impact regions over time and cumulative effect of delay variations over time caused by traffic events on the road network. In this paper, we present a practical industrial-grade ETA prediction framework named DuETA. Specifically, we construct a congestion-sensitive graph based on the correlations of traffic patterns, and we develop a route-aware graph transformer to directly learn the long-distance correlations of the road segments. This design enables DuETA to capture the interactions between the road segment pairs that are spatially distant but highly correlated with traffic conditions. Extensive experiments are conducted on large-scale, real-world datasets collected from Baidu Maps. Experimental results show that ETA prediction can significantly benefit from the learned traffic congestion propagation patterns. In addition, DuETA has already been deployed in production at Baidu Maps, serving billions of requests every day. This demonstrates that DuETA is an industrial-grade and robust solution for large-scale ETA prediction services.