论文标题
Sharifi猜想的水平兼容性
Level compatibility in Sharifi's conjecture
论文作者
论文摘要
Sharifi已从模块化曲线的第一个同源性构建了一张地图,$ x_1(m)$ to $ k $ -group $ k_2(\ mathbf {Z} [Q} [ζ_M,\ frac {1} {M} {M} {M} {M})$,其中$ζ_M$是$ζ_M$是unity的原始$ m $ m $。我们研究这些地图在$ m $变化时的关系。我们的方法取决于Sharifi和Venkatesh开发的技术。
Sharifi has constructed a map from the first homology of the modular curve $X_1(M)$ to the $K$-group $K_2(\mathbf{Z}[ζ_M, \frac{1}{M}])$, where $ζ_M$ is a primitive $M$th root of unity. We study how these maps relate when $M$ varies. Our method relies on the techniques developed by Sharifi and Venkatesh.