论文标题
胰腺癌的基于实例的视觉变压器玫瑰图像分类
Shuffle Instances-based Vision Transformer for Pancreatic Cancer ROSE Image Classification
论文作者
论文摘要
快速的现场评估(ROSE)技术可以通过适当地分析快速染色的细胞病理学图像来显着加速胰腺癌的诊断。计算机辅助诊断(CAD)可以潜在地解决玫瑰病中病理学家的短缺。但是,不同样品之间的癌性模式差异很大,这使得CAD任务极具挑战性。此外,由于不同的染色质量和各种采集装置类型,玫瑰图像在颜色分布,亮度和对比度方面具有复杂的扰动。为了应对这些挑战,我们提出了一种基于洗牌实例的视觉变压器(SI-VIT)方法,该方法可以减少扰动并增强实例之间的建模。借助重新组装的洗牌实例及其袋级软标签,该方法利用回归头将模型集中在细胞上,而不是各种扰动。同时,该模型与分类头结合在一起,可以有效地识别不同实例之间的一般分布模式。结果表明,分类精度的显着提高,更准确地注意区域,表明玫瑰图像的各种模式有效地提取了,并且复杂的扰动大大降低。这也表明SI-VIT在分析细胞病理学图像方面具有巨大的潜力。代码和实验结果可在https://github.com/sagizty/mil-si上获得。
The rapid on-site evaluation (ROSE) technique can signifi-cantly accelerate the diagnosis of pancreatic cancer by im-mediately analyzing the fast-stained cytopathological images. Computer-aided diagnosis (CAD) can potentially address the shortage of pathologists in ROSE. However, the cancerous patterns vary significantly between different samples, making the CAD task extremely challenging. Besides, the ROSE images have complicated perturbations regarding color distribution, brightness, and contrast due to different staining qualities and various acquisition device types. To address these challenges, we proposed a shuffle instances-based Vision Transformer (SI-ViT) approach, which can reduce the perturbations and enhance the modeling among the instances. With the regrouped bags of shuffle instances and their bag-level soft labels, the approach utilizes a regression head to make the model focus on the cells rather than various perturbations. Simultaneously, combined with a classification head, the model can effectively identify the general distributive patterns among different instances. The results demonstrate significant improvements in the classification accuracy with more accurate attention regions, indicating that the diverse patterns of ROSE images are effectively extracted, and the complicated perturbations are significantly reduced. It also suggests that the SI-ViT has excellent potential in analyzing cytopathological images. The code and experimental results are available at https://github.com/sagizty/MIL-SI.