论文标题
使用观察数据将估算和目标试验框架应用于外部控制分析:实体瘤设置中的案例研究
Applying the Estimand and Target Trial frameworks to external control analyses using observational data: a case study in the solid tumor setting
论文作者
论文摘要
在因果推论中,感兴趣的科学问题的正确表述是至关重要的一步。在这里,我们将估算框架应用于患者级临床试验和观察数据的结果的比较,以帮助构建临床问题。此外,我们将估算框架与目标试验框架进行了补充,以解决使用观察数据定义估计和属性的特定问题,并讨论两个框架的协同作用和差异。尽管估计框架和框架对应对以下挑战有用,即在临床试验和常规临床实践中,患者可能会在最初分配的系统治疗后转向随后的全身疗法,而目标试验框架支持解决基线混淆和指数日期周围的挑战。我们将合并的框架应用于比较三个先前报道的三个先前报道的随机3期试验的汇总结果,该试验研究了转移性非小细胞肺癌接受前线化疗(随机临床试验群)的转移性非小细胞肺癌,并用前线化学治疗作为常规临床护理的一部分(观测比较群体)。我们说明了定义估算属性并选择估算器以估算关注的过程的过程,同时考虑了关键基线混杂因素,索引日期和接收后续疗法。所提出的组合框架为利益的因果对比和估计器提供了更明确的清晰度,从而促进了分析的设计和解释。
In causal inference, the correct formulation of the scientific question of interest is a crucial step. Here we apply the estimand framework to a comparison of the outcomes of patient-level clinical trials and observational data to help structure the clinical question. In addition, we complement the estimand framework with the target trial framework to address specific issues in defining the estimand attributes using observational data and discuss synergies and differences of the two frameworks. Whereas the estimand framework proves useful to address the challenge that in clinical trials and routine clinical practice patients may switch to subsequent systemic therapies after the initially assigned systematic treatment, the target trial framework supports addressing challenges around baseline confounding and the index date. We apply the combined framework to compare long-term outcomes of a pooled set of three previously reported randomized phase 3 trials studying patients with metastatic non-small cell lung cancer receiving front-line chemotherapy (randomized clinical trial cohort) and similar patients treated with front-line chemotherapy as part of routine clinical care (observational comparative cohort). We illustrate the process to define the estimand attributes and select the estimator to estimate the estimand of interest while accounting for key baseline confounders, index date, and receipt of subsequent therapies. The proposed combined framework provides more clarity on the causal contrast of interest and the estimator to adopt and thus facilitates design and interpretation of the analyses.