论文标题

用深层卷积神经网络对生物面部识别进行建模

Modeling biological face recognition with deep convolutional neural networks

论文作者

van Dyck, Leonard E., Gruber, Walter R.

论文摘要

深度卷积神经网络(DCNN)已成为生物对象识别的最新计算模型。他们的杰出成功帮助了视力科学的新基础,最近的努力开始将这一成就转移到生物学识别的研究中。在这方面,可以通过将面部选择性生物神经元和大脑区域与人工神经元和模型层进行比较来研究面部检测。同样,可以通过比较体内和硅多维“面部空间”来检查面部识别。在这篇综述中,我们总结了使用DCNNS对生物学识别进行建模的第一批研究。在广泛的行为和计算证据的基础上,我们得出结论,DCNN是有用的模型,与腹侧视觉途径和核心面部网络中一般层次识别的一般分层组织非常相似。在两个示例性的聚光灯下,我们强调了这些模型的独特科学贡献。首先,DCNN中有关面部检测的研究表明,即使在没有视觉体验的情况下,基本面部的选择性也会通过馈电处理自动出现。其次,关于DCNN中面部识别的研究表明,特定的经验和生成机制促进了这一特殊挑战。综上所述,由于这种新颖的建模方法可以密切控制倾向(即体系结构)和经验(即培训数据),因此可以适合于关于生物面部识别基础的长期辩论。

Deep convolutional neural networks (DCNNs) have become the state-of-the-art computational models of biological object recognition. Their remarkable success has helped vision science break new ground and recent efforts have started to transfer this achievement to research on biological face recognition. In this regard, face detection can be investigated by comparing face-selective biological neurons and brain areas to artificial neurons and model layers. Similarly, face identification can be examined by comparing in vivo and in silico multidimensional "face spaces". In this review, we summarize the first studies that use DCNNs to model biological face recognition. On the basis of a broad spectrum of behavioral and computational evidence, we conclude that DCNNs are useful models that closely resemble the general hierarchical organization of face recognition in the ventral visual pathway and the core face network. In two exemplary spotlights, we emphasize the unique scientific contributions of these models. First, studies on face detection in DCNNs indicate that elementary face selectivity emerges automatically through feedforward processing even in the absence of visual experience. Second, studies on face identification in DCNNs suggest that identity-specific experience and generative mechanisms facilitate this particular challenge. Taken together, as this novel modeling approach enables close control of predisposition (i.e., architecture) and experience (i.e., training data), it may be suited to inform long-standing debates on the substrates of biological face recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源