论文标题
一个统一的两阶段语义语义传播和对比度学习网络,用于共同检测
A Unified Two-Stage Group Semantics Propagation and Contrastive Learning Network for Co-Saliency Detection
论文作者
论文摘要
联合检测(COSOD)旨在从多个图像中发现重复的显着物体。两个主要的挑战是组语义提取和噪声对象抑制。在本文中,我们提出了COSOD的统一两阶段的语义传播和对比度学习网络(主题网络)。主题网络可以分解为两个子结构,包括两个阶段的语义传播模块(TGSP),以应对第一个挑战和对比度学习模块(CLM),以应对第二个挑战。具体地说,对于TGSP,我们设计了一个图像到群体传播模块(IGP),以捕获组内相似特征的共识表示和组到像素传播模块(GPP),以构建共识表示的相关性。对于CLM,随着阳性样品的设计,语义一致性得到了增强。通过设计负样品的设计,噪声对象被抑制。关于三个主要基准测试的实验结果表明,主题网络在各种评估指标方面都优于其他竞争对手。
Co-saliency detection (CoSOD) aims at discovering the repetitive salient objects from multiple images. Two primary challenges are group semantics extraction and noise object suppression. In this paper, we present a unified Two-stage grOup semantics PropagatIon and Contrastive learning NETwork (TopicNet) for CoSOD. TopicNet can be decomposed into two substructures, including a two-stage group semantics propagation module (TGSP) to address the first challenge and a contrastive learning module (CLM) to address the second challenge. Concretely, for TGSP, we design an image-to-group propagation module (IGP) to capture the consensus representation of intra-group similar features and a group-to-pixel propagation module (GPP) to build the relevancy of consensus representation. For CLM, with the design of positive samples, the semantic consistency is enhanced. With the design of negative samples, the noise objects are suppressed. Experimental results on three prevailing benchmarks reveal that TopicNet outperforms other competitors in terms of various evaluation metrics.