论文标题

在强耦合复杂等离子体系统中,流体和固态的自我维持的非平衡共存

Self-Sustained Non-Equilibrium Co-existence of Fluid and Solid States in a Strongly Coupled Complex Plasma System

论文作者

Hariprasad, M. G, Bandyopadhyay, P., Nikolaev, V. S., Kolotinskii, D. A., Arumugam, S., Arora, G., Singh, S., Sen, A., Timofeev, A. V.

论文摘要

一个复杂的(尘土飞扬)等离子体系统是一种范式模型,用于研究无效凝分固液相变的动力学。同时,在某些条件下,复杂的等离子体系统还可以显示有效介质的特征,而微米大小的颗粒将环境环境的能量转化为运动,从而变得活跃。我们对实验复合物等离子体系统进行了详细的分析,该分析显示了由于血浆能量转化为该系统中心区域中微粒的运动能量,冷晶与冷液状态之间的非平衡固定共存的证据。灰尘颗粒之间的血浆介导的非互联性相互作用是中央子系统加热的基本机制,它充当将中央子系统保持在熔融状态的微尺度能源。基于组合分子动力学和细胞内粒子方法的系统对系统的准确模拟表明,在选举陷阱的作用下,系统的强结构不均匀性使不稳定性的发展成为局部过程。我们介绍了在DC Glow放电等离子体中使用复杂等离子体系统进行的两个实验测试和详细的理论分析。

A complex (dusty) plasma system is well known as a paradigmatic model for studying the kinetics of solid-liquid phase transitions in inactive condensed matter. At the same time, under certain conditions a complex plasma system can also display characteristics of an active medium with the micron-sized particles converting energy of the ambient environment into motility and thereby becoming active. We present a detailed analysis of the experimental complex plasmas system that shows evidence of a non-equilibrium stationary coexistence between a cold crystalline and a hot fluid state in the structure due to the conversion of plasma energy into the motion energy of microparticles in the central region of the system. The plasma mediated non-reciprocal interaction between the dust particles is the underlying mechanism for the enormous heating of the central subsystem, and it acts as a micro-scale energy source that keeps the central subsystem in the molten state. Accurate multiscale simulations of the system based on combined molecular dynamics and particle-in-cell approaches show that strong structural nonuniformity of the system under the action of electostatic trap makes development of instabilities a local process. We present both experimental tests conducted with a complex plasmas system in a DC glow discharge plasma and a detailed theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源