论文标题
具有无度的极性比对的活性颗粒的新兴度量状态
Emergent Metric-like States of Active Particles with Metric-free Polar Alignment
论文作者
论文摘要
我们研究了通过极地排列与最近邻居相互作用的自螺旋粒子模型。通过探索其相位空间的函数,该函数的函数(对齐强度$ g $和peclet编号$ \ mathrm {pe} $),我们确定了两个不同的订单disorder transorditions。一个是连续的,发生在低临界$ g $值的情况下,与PE无关,并且类似于没有密度订购耦合的平均场过渡。另一个是不连续的,取决于涉及$ g $和PE的组合控制参数,并且是由遵循度量样动力学的小,密集,高度持久的粒子簇的形成而产生的。这些密集的簇以临界值的形式形成,其组合控制参数$ \ mathrm {pe}/g^α$,$α\约1.5 $,这对于基于不同的对准模型似乎有效。我们的研究表明,具有无度相互作用的活动粒子的模型可以产生特征性的长度尺度,并自组织成类似度量的集体状态,从而经历了公制的跃迁。
We study a model of self-propelled particles interacting with their $k$ nearest neighbors through polar alignment. By exploring its phase space as a function of two nondimensional parameters (alignment strength $g$ and Peclet number $\mathrm{Pe}$), we identify two distinct order-disorder transitions. One is continuous, occurs at a low critical $g$ value independent of Pe, and resembles a mean-field transition with no density-order coupling. The other is discontinuous, depends on a combined control parameter involving $g$ and Pe, and results from the formation of small, dense, highly persistent clusters of particles that follow metric-like dynamics. These dense clusters form at a critical value of the combined control parameter $\mathrm{Pe}/g^α$, with $α\approx 1.5$, which appears to be valid for different alignment-based models. Our study shows that models of active particles with metric-free interactions can produce characteristic length-scales and self-organize into metric-like collective states that undergo metric-like transitions.