论文标题
无人机参考本地化:无人机自定位的有效的异质空间特征交互方法
Drone Referring Localization: An Efficient Heterogeneous Spatial Feature Interaction Method For UAV Self-Localization
论文作者
论文摘要
图像检索(IR)已成为无人驾驶汽车(无人机)自定位的有希望的方法。但是,基于IR的方法面临几个挑战:1)预处理和后处理产生大量的计算和存储开销; 2)双源特征之间缺乏相互作用会损害精确的空间感知。在本文中,我们提出了一种有效的异构空间特征交互方法,称为无人机引用定位(DRL),该方法旨在将无人机视图定位在卫星图像中。与传统的方法不同的方法将不同的数据源分别处理,然后进行余弦相似性计算,DRL促进了异质特征的可学习相互作用。为了实施提出的DRL,我们设计了两个基于变压器的框架,即融合后和混合融合,从而实现了端到端的训练和推理。此外,我们引入随机缩放裁剪和体重平衡损失技术以增强配对数据并优化正面和负样品之间的平衡。此外,我们构建了一个新的数据集UL14,并为DRL框架量身定制的基准测试。与传统的IR方法相比,DRL实现了卓越的定位精度(MA@20 +9.4 \%),同时显着缩短了计算时间(1/7)和存储开销(1/3)。数据集和代码将公开可用。数据集和代码可在\ url {https://github.com/dmmm1997/drl}上获得。
Image retrieval (IR) has emerged as a promising approach for self-localization in unmanned aerial vehicles (UAVs). However, IR-based methods face several challenges: 1) Pre- and post-processing incur significant computational and storage overhead; 2) The lack of interaction between dual-source features impairs precise spatial perception. In this paper, we propose an efficient heterogeneous spatial feature interaction method, termed Drone Referring Localization (DRL), which aims to localize UAV-view images within satellite imagery. Unlike conventional methods that treat different data sources in isolation, followed by cosine similarity computations, DRL facilitates the learnable interaction of heterogeneous features. To implement the proposed DRL, we design two transformer-based frameworks, Post-Fusion and Mix-Fusion, enabling end-to-end training and inference. Furthermore, we introduce random scale cropping and weight balance loss techniques to augment paired data and optimize the balance between positive and negative sample weights. Additionally, we construct a new dataset, UL14, and establish a benchmark tailored to the DRL framework. Compared to traditional IR methods, DRL achieves superior localization accuracy (MA@20 +9.4\%) while significantly reducing computational time (1/7) and storage overhead (1/3). The dataset and code will be made publicly available. The dataset and code are available at \url{https://github.com/Dmmm1997/DRL} .