论文标题
具有三个不同未配对数据集的Cyclegan
CycleGAN with three different unpaired datasets
论文作者
论文摘要
原始出版物使用周期一致的对抗网络不成对图像到图像的翻译,这是该实施项目的灵感。研究人员开发了一种新的方法,用于在原始研究中使用未配对的数据集进行图像到图像翻译。尽管PIX2PIX模型发现很好,但匹配的数据集经常不可用。因此,在没有配对数据的情况下,Cyclegan可以通过将图像转换为图像来解决此问题。为了减少图像之间的差异,他们实施了周期一致性损失。我用三个不同的数据集评估了Cyclegan,本文简要讨论了发现和结论。
The original publication Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks served as the inspiration for this implementation project. Researchers developed a novel method for doing image-to-image translations using an unpaired dataset in the original study. Despite the fact that the pix2pix models findings are good, the matched dataset is frequently not available. In the absence of paired data, cycleGAN can therefore get over this issue by converting images to images. In order to lessen the difference between the images, they implemented cycle consistency loss.I evaluated CycleGAN with three different datasets, and this paper briefly discusses the findings and conclusions.