论文标题

使用特定于类的转移的语义分割的持续无监督域的适应性

Continual Unsupervised Domain Adaptation for Semantic Segmentation using a Class-Specific Transfer

论文作者

Marsden, Robert A., Wiewel, Felix, Döbler, Mario, Yang, Yang, Yang, Bin

论文摘要

近年来,语义细分领域取得了巨大进展。但是,剩下的一个具有挑战性的问题是,细分模型并未推广到看不见的域。为了克服这个问题,要么必须标记大量涵盖整个域的数据,这些数据通常在实践中是不可行的,要么应用无监督的域适应性(UDA),只需要标记为源数据。在这项工作中,我们专注于UDA,并另外解决了适应单个域,还针对一系列目标域的情况。这需要机制,以阻止模型忘记其先前学习的知识。为了使细分模型适应目标域,我们遵循利用轻质样式转移的想法,将标记的源图像的样式转换为目标域的样式,同时保留源内容。为了减轻源和目标域之间的分布移位,模型在第二步中的传输源图像上进行了微调。依赖于自适应实例归一化(ADAIN)或傅立叶变换的现有轻巧样式转移方法仍然缺乏性能,并且无法基本上改善常见数据增强,例如颜色抖动。这样做的原因是,这些方法不关注特定于区域或类别的差异,而是主要捕获最显着的样式。因此,我们提出了一个简单且轻巧的框架,其中包含两个类条件的ADAIN层。为了提取传输层所需的特定类目标矩,我们使用未过滤的伪标签,与真实标签相比,我们表明这是有效的近似值。我们在合成序列上广泛验证了我们的方法(CACE),并进一步提出了由真实领域组成的具有挑战性的序列。 CACE在视觉和定量上的表现优于现有方法。

In recent years, there has been tremendous progress in the field of semantic segmentation. However, one remaining challenging problem is that segmentation models do not generalize to unseen domains. To overcome this problem, one either has to label lots of data covering the whole variety of domains, which is often infeasible in practice, or apply unsupervised domain adaptation (UDA), only requiring labeled source data. In this work, we focus on UDA and additionally address the case of adapting not only to a single domain, but to a sequence of target domains. This requires mechanisms preventing the model from forgetting its previously learned knowledge. To adapt a segmentation model to a target domain, we follow the idea of utilizing light-weight style transfer to convert the style of labeled source images into the style of the target domain, while retaining the source content. To mitigate the distributional shift between the source and the target domain, the model is fine-tuned on the transferred source images in a second step. Existing light-weight style transfer approaches relying on adaptive instance normalization (AdaIN) or Fourier transformation still lack performance and do not substantially improve upon common data augmentation, such as color jittering. The reason for this is that these methods do not focus on region- or class-specific differences, but mainly capture the most salient style. Therefore, we propose a simple and light-weight framework that incorporates two class-conditional AdaIN layers. To extract the class-specific target moments needed for the transfer layers, we use unfiltered pseudo-labels, which we show to be an effective approximation compared to real labels. We extensively validate our approach (CACE) on a synthetic sequence and further propose a challenging sequence consisting of real domains. CACE outperforms existing methods visually and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源