论文标题
使用深度学习中的交通监视中的实时事故检测
Real-Time Accident Detection in Traffic Surveillance Using Deep Learning
论文作者
论文摘要
自动检测交通事故是交通监控系统中重要的新兴主题。如今,许多城市交叉路口都配备了与交通管理系统相关的监视摄像机。因此,计算机视觉技术可以是自动事故检测的可行工具。本文提出了一个新的有效框架,用于在交通监视应用的交叉点上进行事故检测。所提出的框架由三个层次步骤组成,包括基于最先进的Yolov4方法的有效,准确的对象检测,基于Kalman滤波器与匈牙利算法进行关联的对象跟踪以及通过轨迹冲突分析进行的事故检测。对象关联应用了新的成本函数,以适应对象跟踪步骤中的遮挡,重叠对象和形状变化。为了检测不同类型的轨迹冲突,包括车辆到车辆,车辆对乘车和车辆对自行车,对物体轨迹进行了分析。使用真实交通视频数据的实验结果显示,该方法在交通监视的实时应用中的可行性。特别是,以低的错误警报率和高检测率检测到轨迹冲突,包括在城市交叉点发生的近乎事故和事故。使用从YouTube收集的具有不同照明条件的视频序列评估所提出框架的鲁棒性。该数据集可在以下网址公开获取:http://github.com/hadi-ghnd/accidentdetection。
Automatic detection of traffic accidents is an important emerging topic in traffic monitoring systems. Nowadays many urban intersections are equipped with surveillance cameras connected to traffic management systems. Therefore, computer vision techniques can be viable tools for automatic accident detection. This paper presents a new efficient framework for accident detection at intersections for traffic surveillance applications. The proposed framework consists of three hierarchical steps, including efficient and accurate object detection based on the state-of-the-art YOLOv4 method, object tracking based on Kalman filter coupled with the Hungarian algorithm for association, and accident detection by trajectory conflict analysis. A new cost function is applied for object association to accommodate for occlusion, overlapping objects, and shape changes in the object tracking step. The object trajectories are analyzed in terms of velocity, angle, and distance in order to detect different types of trajectory conflicts including vehicle-to-vehicle, vehicle-to-pedestrian, and vehicle-to-bicycle. Experimental results using real traffic video data show the feasibility of the proposed method in real-time applications of traffic surveillance. In particular, trajectory conflicts, including near-accidents and accidents occurring at urban intersections are detected with a low false alarm rate and a high detection rate. The robustness of the proposed framework is evaluated using video sequences collected from YouTube with diverse illumination conditions. The dataset is publicly available at: http://github.com/hadi-ghnd/AccidentDetection.